首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li Z  Li K  Tong S 《Talanta》2000,51(1):63-70
The large particle light scattering technique was first developed as a sensitive and convenient analysis method for microdetermination of nucleic acids by using a common spectrofluorometer. In 0.1 mol l(-1) HCl, H(2)SO(4), or HNO(3) solution, the nucleic acids can aggregate to form large particles whose dimensions are comparable to the wavelength of UV-Vis light. The large particles can result in very strong light scattering which is well proportional to the concentration of nucleic acids in the range of 0.06-100.0 mug ml(-1) for calf thymus DNA, 0.05-60.0 mug ml(-1) for fish sperm DNA, and 0.6-90.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 18.0 ng ml(-1) for calf thymus DNA, 16.0 ng ml(-1) for fish sperm DNA, and 57.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined with satisfactory results.  相似文献   

2.
Chen F  Huang J  Ai X  He Z 《The Analyst》2003,128(12):1462-1466
Base on the enhancement of Rayleigh light scattering signals of molecular "light switches" by DNA under acidic condition, a sensitive and convenient method for DNA determination was proposed. The experiments indicated that, under optimum conditions, good linear relationships were obtained between the Rayleigh light scattering intensity and the concentration of nucleic acids. The detect limits of calf thymus DNA (ctDNA) were 13.0 ng ml(-1), 4.2 ng ml(-1), 51.5 ng ml(-1) and 3.0 ng ml(-1) with four "light switches", respectively. Plasmid DNA extracted from Bacillus subtilis were determined by the proposed method with satisfactory results, and the recovery rates of calf thymus DNA were in the range of 94.6-110.7%.  相似文献   

3.
Zhang W  Xu H  Wu S  Chen X  Hu Z 《The Analyst》2001,126(4):513-517
For the first time, Crystal Violet (CV) was used to determine nucleic acid concentrations using the resonance light-scattering (RLS) technique. Based on the enhancement of the RLS of CV by nucleic acids, a new quantitative determination method for nucleic acids in aqueous solutions has been developed. At pH 5.03 and ionic strength 0.005 mol kg-1, the interaction of CV with nucleic acids results in three characteristic RLS peaks at 344.0, 483.0 and 666.0 nm. With 4.0 x 10(-5) mol l-1 of CV, linear relationships were found between the enhanced intensity of RLS at 666.0 nm and the concentration of nucleic acids in the range 0-2.5 micrograms ml-1 for herring sperm DNA, 0-4.0 micrograms ml-1 for calf thymus DNA and 0-4.5 micrograms ml-1 for yeast RNA. The limits of determination were 13.8 ng ml-1 for herring sperm DNA, 36.8 ng ml-1 for calf thymus DNA and 69.0 ng ml-1 for yeast RNA. The assay is convenient, rapid, inexpensive and simple.  相似文献   

4.
Li ZP  Li KA  Tong SY 《Talanta》2001,55(4):669-675
Based on the strong enhancement effect of nucleic acids on resonance light scattering of dequalinium chloride, the determination method for micro amounts of nucleic acids has been developed. Under the experimental conditions (5.0x10(-5) mol l(-1) dequalinium, pH 7.0, at room temperature) the linear range of this assay is 0.04-10.0 mug ml(-1) for calf thymus DNA and fish sperm DNA, and 0.04-35.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 6.2 ng ml(-1) for calf thymus DNA, 7.4 ng ml(-1) for fish sperm DNA, and 7.0 ng ml(-1) for yeast RNA, respectively. Almost no interference can be observed from ionic strength, proteins, nucleoside, and most of the metal ions. Six synthetic samples were determined satisfactorily.  相似文献   

5.
A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL-1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL-1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL-1, 3.4 ng mL-1 and 2.9 ng mL-1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.  相似文献   

6.
Resonance Rayleigh scattering (RRS) of the thionine (TH)-nucleic acids system and its analytical application have been studied. In pH 2.2 acidic buffer medium, some nucleic acids can react with TH to form TH-nucleic acids complex. This results in a great enhancement of RRS and the appearance of new RRS spectra. The RRS spectral characteristics of TH-ctDNA system, the affecting factors and the optimum conditions of the reaction have been investigated. The enhancement of the RRS signal is directly proportional to the concentration of nucleic acids in the range 0-10.0 microg/ml for calf thymus DNA and 0-15.0 microg/ml for yeast RNA, and its detection limits (3sigma) are 3.5 ng/ml for calf thymus DNA and 4.9 ng/ml for yeast RNA, respectively. The method shows a wide linear range and high sensitivity, and was applied to the determination of trace amounts of nucleic acid in synthetic samples and practical samples with satisfactory results. The bind properties for the interactions of TH with ctDNA were investigated using a Scatchard plot based on the measurement of the enhanced RRS data at 340 nm, and the binding number and intrinsic binding constant are 4.9 and 2.6 x 10(5) mol/dm(3), respectively.  相似文献   

7.
Liu R  Yang J  Wu X  Sun C  Wu T 《The Analyst》2001,126(8):1367-1371
A new preresonance light scattering (PRLS) assay of nucleic acids is presented. At pH 7.30, the weak PRLS of morin-cetyltrimethylammonium bromide (CTMAB) can be greatly enhanced by the addition of nucleic acids, owing to the interaction between the nucleic acid and morin-CTMAB. After the addition of morin and CTMAB to DNA, the zeta potential of DNA decreases and changes from negative to positive, which is due to the formation of an associate, the aggregation of morin on nucleic acids and the electric neutralization between DNA and the cationic surfactant CTMAB. Mechanism studies showed that the enhanced PRLS comes from the aggregation of morin in the presence of nucleic acids and CTMAB. The enhanced intensity of PRLS is in proportion to the concentration of nucleic acids in the range 7.5 x 10(-9)-1.0 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-1.0 x 10(-6) g ml(-1) for salmon sperm DNA and 1.0 x 10(-8)-1.0 x 10(-6) g ml(-1) for yeast RNA. The detection limits are 3.4, 6.2 and 4.1 ng ml(-1) for calf thymus DNA, salmon sperm DNA and yeast RNA, respectively. Synthetic samples were analyzed satisfactorily.  相似文献   

8.
A new assay of nucleic acids at nanogram level was established based on the enhanced resonance light scattering (RLS) signals of two zwitterionics cocamidopropyl hydroxysultaine (HSB) and lauryl betaine (BS-12). Under optimum conditions, the weak RLS signal of HSB is enhanced by nucleic acids, and the enhanced RLS intensity is proportional to the concentration of nucleic acids in the range of 0.02–7.3 mg l−1 for calf thymus DNA and 0.01–8.6 mg l−1 for fish sperm DNA. The detection limits were 1.5 ng ml−1 for calf thymus DNA and 1.9 ng ml−1 for fish sperm DNA. Plasmid DNA extracted from K-12-HB101 colt was determined with satisfactory results.  相似文献   

9.
Du X  Sasaki S  Nakamura H  Karube I 《Talanta》2001,55(1):93-98
The interaction of histone with nucleic acids was characterized by light-scattering measurement using a common spectrofluorometer. Thereby, a sensitive and convenient method for the determination of nucleic acids was established. At pH 4.5-6.5, the interaction of histone with nucleic acids resulted in considerable light-scattering , and four characteristic peaks at 298, 450, 503, and 551 nm were observed. The light-scattering was applied to the determination of nucleic acids. The experiments indicated that, under optimal conditions, a linear relationship was obtained between the light-scattering intensity (I(LS)) and the concentration of nucleic acids. The linear ranges were 0.02-2.0 mug ml(-1) for fish sperm DNA (fsDNA), 0.05-1.5 mug ml(-1) for calf thymus DNA (ctDNA), 0.05-2.5 mug ml(-1) for Herring testis DNA (HtDNA), and 0.05-1.5 mug ml(-1) for human placenta DNA (hpDNA). The detection limits were 2.0 ng for fish sperm DNA, 2.0 ng for calf thymus DNA, 5.0 ng for Herring testis DNA, and 3.0 ng for human placenta DNA. The nucleic acids in yeast cell extraction were determined by simple vortex extraction. The results were satisfactory, and the recovery rates were in the range of 88-108%.  相似文献   

10.
It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH 7.00, nucleic acids can quench the resonance light scattering (RLS) of europium (III) (Eu3+)-2-thenoyltrifluoroacetne (TTA)-1,10-phenanthroline (Phen) system. Based on this, a sensitive method for the determination of nucleic acids is proposed. The experiments indicate that under the optimum conditions, the quenched RLS intensity is in proportion to the concentration of nucleic acids in the range of 1.0x10(-10) to 2.0x10(-6) g ml-1 for fish sperm (fsDNA), 1.0x10(-11) to 1.0x10(-6) g ml-1 for yeast RNA (yRNA), 5.0x10(-11) to 5.0x10(-7) g ml-1 for calf thymus DNA (ctDNA). Their detection limits (S/N=3) are 0.03, 0.006 and 0.002 ng ml-1, respectively. Therefore, the proposed method is the most sensitive RLS method for the determination of nucleic acids so far. The interaction between nucleic acids and Eu3+-TTA-Phen is also discussed.  相似文献   

11.
The interaction of berberine with nucleic acid in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by spectrophotometry and resonance light scattering (RLS) spectroscopy. At pH 7.30, the RLS signals of berberine were greatly enhanced by nucleic acid in the region of 300-600 nm characterized by four peaks at 324.0, 386.5, 416.5 and 465.0 nm. The binding properties were examined by using a Scatchard plot based on the measurement of enhanced RLS data at 416.5 nm. Under optimum conditions, the increase of RLS intensity of this system at 416.5 nm is proportional to the concentration of nucleic acid. The linear range is 7.5 x 10(-9)-7.5 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-2.5 x 10(-5) g ml(-1) for herring sperm DNA, and 5.0 x 10(-9)-2.5 x 10(-5) g ml(-1) for yeast RNA. The detection limits (S/N = 3) are 2.1 ng ml(-1) for calf thymus DNA, 6.5 ng ml(-1) for herring sperm DNA and 3.5 ng ml(-1) for yeast RNA, respectively. Three synthetic samples were analyzed satisfactorily.  相似文献   

12.
Li DH  Chen XL  Fang Y  Xu JG 《The Analyst》2001,126(4):518-522
Based on the ability of nucleic acids to shift the association equilibrium of the ion-association complex of Acridine Orange and tetrasulfonated aluminium phthalocyanine, thus leading to an increase in the phthalocyanine fluorescence, a method is suggested for the fluorimetric determination of nucleic acids. Investigations were carried out on the spectral characteristics, order of addition of reagents, selection of the buffer system, effect of pH, influence of reaction time, effect of salt, the usage of reagents, interference of foreign substances and the effect of different acridine derivatives. Under the optimum conditions, the calibration graphs for the determination of calf thymus DNA (CT DNA), salmon DNA (SM DNA) and yeast RNA were linear over the ranges 0.04-1.2, 0.04-1.2 and 0.1-1.2 micrograms cm-1, respectively. The detection limits for CT DNA, SM DNA and RNA were 17, 24 and 98 micrograms cm-3, respectively. The relative standard deviation (n = 6) was within 4.6% for the detection of samples. The method was applied to the determination of Staphylococcus aureus DNA and the result was in agreement with that achieved by a UV method.  相似文献   

13.
Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0 x 10(-9) to 1.0 x 10(-6) g ml(-1), 7.5 x 10(-8) to 1.0 x 10(-6) g ml(-1) and 7.5 x 10(-8) to 2.5 x 10(-6) g ml(-1) for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml(-1) (S/N = 3), respectively. Actual biological samples were satisfactorily determined.  相似文献   

14.
For the first time, poly(ethylenimine) (PEI) was used to determine nucleic acids with a light scattering technique using a common spectrofluorometer. The interaction of PEI with DNA results in greatly enhanced intensity of light scattering at 300 nm, which is caused by the formation of the big particles between DNA and PEI. Based on this, a new quantitative method for nucleic acid determination in aqueous solutions has been developed. Under the optimum conditions, the enhanced intensity of light scattering is proportional to the concentration of nucleic acid in the range of 0.01-10.0 microg ml(-1) for herring sperm DNA (hsDNA), 0.02-10.0 microg ml(-1) for calf thymus DNA (ctDNA), 0.02-20.0 microg ml(-1) for yeast RNA (yRNA). The detection limits are 5.3, 9.9, and 13.7 ng ml(-1), respectively. Synthetic samples were determined satisfactorily. At the same time, the light scattering technique has been successfully used to obtain the information on the effects of pH and ionic strength on the formation and the stability of the DNA/PEI complex, which is important in some fields such as genetic engineering and gene transfer. Using ethidium bromide (EB) as a fluorescent probe, the binding of PEI with hsDNA was studied. Both the binding constant of EB with DNA and the number of binding sites per nucleotide decrease with increasing concentration of PEI, indicating noncompetitive inhibition of EB binding to DNA in the presence of PEI. And the association constant of PEI to DNA obtained is 1.2 x 10(5) M(-1). IR-spectra show that PEI interacts with DNA through both the phosphate groups and the bases of DNA and the formation of DNA/PEI complex may cause the change of the conformation of the DNA secondary structure, which is also proved by UV-spectra.  相似文献   

15.
Lu W  Huang CZ  Li YF 《The Analyst》2002,127(10):1392-1396
A total internal reflected resonance light scattering (TIR-RLS) technique, the coupling of resonance light scattering (RLS) technique with total internal reflected light at the interface of two immiscible liquids, where the steep change of the refractive indexes occurs to result in an evanescent field, is proposed with the characteristics of separation and enrichment properties of analytes and direct use of oil-soluble reagents free from surfactants. At pH 8.69 and ion strength 0.008, ternary amphiphilic species formed by the interaction of nucleic acids, including calf thymus DNA (ctDNA), fish sperm DNA (fsDNA), and yeast RNA (yRNA), with Eu(III) in the presence of oil-soluble trioctylphosphine oxide (TOPO), are adsorbed to the water/tetrachloromethane (H20/CCl4) interface, giving rise to significantly enhanced TIR-RLS signals. It has been found that the enhanced TIR-RLS intensity at 348.0 nm is proportional to the concentration of thermally denatured ctDNA, fsDNA and yRNA in the range 0.002-2.5 microg ml(-1), 0.002-2.5 microg ml(-1) and 0.003-2.0 microg ml(-1), respectively and their limits of determination (3sigma) are 0.16 ng ml(-1), 0.19 ng ml(-1) and 0.28 ng ml(-1), correspondingly. Complicated artificial samples with highly interfering backgrounds were determined satisfactorily.  相似文献   

16.
A new method with a cationic near-IR cyanine as fluorescent probe was developed for the determination of nucleic acids. The near-IR cyanine shows maximum excitation and emission wavelengths at 765 and 790 nm, respectively, in aqueous solution. The method is based on the fluorescence decrease of near-IR cyanine in the presence of nucleic acids. Under optimal conditions, the ratio of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of nucleic acids over the range 0.10-1.2 microg/mL for CT (calf thymus) DNA or SM (salmon sperm) DNA, and 0.10-1.6 microg/mL for yeast RNA. The detection limits were 30 ng/mL for CT DNA, 25 ng/mL for SM DNA and 70 ng/mL for yeast RNA. The relative standard deviation (n = 6) was 2.1% for 500 ng/mL CT DNA, 2.4% for 500 ng/mL SM DNA and 2.7% for 500 ng/mL yeast RNA, respectively.  相似文献   

17.
Cysteine-capped ZnS nanometer-sized fluorescent particles were produced by a colloidal aqueous synthesis. The functionalized nanoparticles are water-soluble and suitable for biological application. A synchronous fluorescence method has been developed for the rapid determination of DNA with functionalized nano-ZnS as a fluorescence probe, based on the synchronous fluorescence enhancement of cysteine-capped nano-ZnS in the presence of DNA. When Deltalambda =190 nm, maximum synchronous fluorescence is produced at 267 nm at pH 5.12. Under optimum conditions, the synchronous fluorescence intensity is proportional to the concentration of nucleic acids in the range 0.1-1.2 microg ml(-1) for calf thymus DNA, 0.1-0.6 microg ml(-1) for fish sperm DNA. The corresponding detection limit is 32.9 ng ml(-1) for calf thymus DNA and 24.6 ng ml(-1) for fish sperm DNA. This method is simple, inexpensive, rapid and sensitive. The recovery and relative standard deviation are satisfactory.  相似文献   

18.
Using a common spectrofluorometer to measure the intensity of Rayleigh light-scattering (RLS), a method for determination of nucleic acids has been developed. At pH 10.24 and ionic strength 0.01 mol l-1 (NaCl), the Rayleigh light-scattering of the tetra-(N-hexadecylpyridiniumyl) porphyrin (TC16PyP) is greatly enhanced by nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB), with the scattering peak located at 311.8 nm. The enhanced RLS intensity is in proportion to the concentration of calf thymus DNA (ctDNA) in the range 0.2-6.0 microg ml-1 and to that of fish sperm DNA (fsDNA) in the range 0.05-3.0microg ml-1. The limits of detection are 0.016 microg ml-1 for calf thymus DNA and 0.023 microg ml-1 for fish sperm DNA when the concentration of TPP was chosen 2.0 x 10(-6) mol l-1. Four synthetic samples were determined satisfactorily.  相似文献   

19.
核酸对氯化银胶体溶液共振光散射的猝灭作用及其应用   总被引:7,自引:0,他引:7  
朱昌青  李东辉  郑洪  朱庆枝  许金钩 《分析化学》2000,28(12):1485-1488
报道了一种测定水溶液中核酸的方法,该法基于核酸对氯化银溶胶共振射光的猝灭作用。在理想测定条件下,散射光的猝灭程度正比于核酸的浓度,三种核酸(calf thymus DNA,herring DNA and YeastRNA)的线性范围分别为0-20μg/L,0-60μg/L和0-80μg/L,检测限分别为0.65μg/L,1.1μg/L和1.9μg/L。6种合成样品的测定结果令人满意,机理研究结果表明,核酸中的碱基(尤其是嘌呤碱)同银离子具有很强的结合能力,这种结合影响了氯化银的沉淀平衡,导致了氯化银溶胶共振散射光的猝灭。  相似文献   

20.
Because the fluorescence of azur A can be quenched by adding nucleic acid, a sensitive fluorometric method for determination of nucleic acids at nanogram levels was established. Using optimal conditions, the calibration curves were linear in the range of 0-6.0 microg/mL for calf thymus deoxyribonucleic acid (ct DNA) and 0-7.0 microg/mL for herring sperm DNA (hs DNA). The limits of determination were 3.5 and 3.8 ng/mL, respectively, which shows the high sensitivity of this method. Triton X-100 microemulsion was applied as a sensitive media to enhance the sensitivity. The binding mode concerning the interactions of azur A with nucleic acids was also studied and the association constant with different binding numbers was obtained. The method has been applied to the determination of nucleic acid in both synthetic and real samples, such as cauliflower and pork liver, with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号