首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于雨燕翅膀的仿生三角翼气动特性计算研究   总被引:1,自引:1,他引:0  
张庆  叶正寅 《力学学报》2021,53(2):373-385
针对低雷诺数微型飞行器的气动布局, 设计出类似雨燕翅膀的一组具有不同前缘钝度的中等后掠($\varLambda =50^{\circ}$)仿生三角翼. 为了定量对比研究三角翼后缘收缩产生的气动效应, 设计了一组具有同等后掠的普通三角翼. 为了深入研究仿生三角翼布局的前缘涡演化特性以及总体气动特性, 采用数值模拟方法详细地探索了低雷诺数($Re=1.58\times 10^{4})$流动条件下前缘涡涡流结构和气动力随迎角的变化规律. 分析结果表明, 前缘钝度和后缘收缩对仿生三角翼前缘涡的涡流强度和涡破裂位置有显著影响. 相对于钝前缘来说, 尖前缘使仿生三角翼上下表面的压力差增大, 涡流强度也更大, 增升作用也更显著. 相对于普通三角翼构型, 仿生三角翼的前缘斜切使其阻力更大, 但后缘的收缩使涡破裂位置固定在此位置, 因此整个上翼面保持低压, 总的升力更大. 由于小迎角时升力增大更明显, 因此仿生三角翼的气动效率在小迎角时明显大于普通三角翼. 这些结论对于揭示鸟类的飞行机理以及未来微型仿生飞行器的气动布局设计具有重要的研究价值.   相似文献   

2.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
模型昆虫翼作非定常i运动时的气动力特性   总被引:9,自引:0,他引:9  
兰世隆  孙茂 《力学学报》2001,33(2):173-182
基于Navier-Stokes方程的数值解,研究了一模型昆虫翼在小雷诺数(Re=100)下作非定常运动时的气动力特性.这些运动包括翼启动后的常速转动,快速加、减速转动,常速转动中快速上仰(模拟昆虫翼的上挥或下拍、翻转等运动).有如下结果在小雷诺数下,模型昆虫翼以大攻角(α=35°)作常速转动运动时,由于失速涡不脱落,可产生较大的升力系数.其机理是翼转动时,翼尖附近(该处线速度大)上翼面压强比翼根附近(该处线速度小)的小得多,因而存在展向压强梯度,同时存在着沿展向的离心力,此展向压强梯度和离心力导致的展向流动在失速涡的轴向方向,其可避免失速涡脱落.模型昆虫翼在快速加、减速转动和快速上仰运动中,虽然雷诺数小,但由于在短时间内产生了大涡量,也可产生十分大的气动力,例如在快速上仰运动中,升力系数可大于10.  相似文献   

4.
The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.  相似文献   

5.
The use of wings of complex planform is characteristic of the present stage of development of aviation; with discontinuities along the leading and trailing edges; with curved edges; with variable geometry (by pivoting the wing panels). This article considers some aspects of the calculation of the over-all and distributed aerodynamic characteristics of such wings for low and high subsonic velocities. The methods, based on the lifting surface scheme and the use of discrete vortical singularities, enable quite efficient and reliable digital computation of the flow about these wings at moderate angles of attack. For steady motion of the wing a further development of the method of [1] is obtained, for harmonic oscillations an extension of [2] is obtained, and for aperiodic motions of the wing and gust inputs a modification of the method of [3] is found.The author wishes to thank T. M. Muzychenko and N. G. Lavrenko for carrying out the calculations of the examples.  相似文献   

6.
In this study the flow around a winged-seed in auto-rotation is characterized using direct numerical simulations (DNS) at Reynolds number in the range 80–240, based on the descent speed and a characteristic chord length. In this range, the flow is approximately steady when observed from a reference frame fixed to the seed. For all cases, the flow structure consists of a wing tip vortex which describes a helical path, a vortex shed behind the nut of the seed and a stable leading edge vortex above the wing surface which merges with the tip vortex. With increasing Reynolds number, the leading edge vortex becomes more intense and gets closer to the wing surface. The simulation results also show the formation of a spanwise flow on the upper surface of the wing, moving fluid towards the wing tip in a region downstream and beneath the leading edge vortex. This spanwise flow is rather weak inside the core of the leading edge vortex, and the analysis of the streamlines show a very weak transport of vorticity along the vortex for the cases under consideration. The analysis of the flow suggests that the stabilization of the leading edge vortex is mainly due to non-inertial accelerations, although viscous effects may contribute, specially at lower Re. Furthermore, the leading edge vortex has been characterized by analysing the flow variables averaged along cross-sections of the vortex. While some quantities, like the spanwise velocity or the pressure inside the vortex, are rather insensitive to the threshold used to define the leading edge vortex, the same is not true for the circulation of the vortex or its averaged spanwise vorticity, due to the viscous nature of the vortex. Finally, it is observed that the spanwise vorticity scales with the angular rotation of the seed for the different Re.  相似文献   

7.
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically. After an initial start from rest, the wing is made to execute an azimuthal rotation (sweeping) at a large angle of attack and constant angular velocity. The Reynolds number (Re) considered in the present note is 480 (Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root). During the constant-speed sweeping motion, the stall is absent and large and approximately constant lift and drag coefficients can be maintained. The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows. Soon after the initial start, a vortex ring, which consists of the leading-edge vortex (LEV), the starting vortex, and the two wing-tip vortices, is formed in the wake of the wing. During the subsequent motion of the wing, a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength. This prevents the LEV from shedding. As a result, the size of the vortex ring increases approximately linearly with time, resulting in an approximately constant time rate of the first moment of vorticity, or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wingspan. The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force. The project supported by the National Natural Science Foundation of China (10232010)  相似文献   

8.
This paper presents a numerical investigation of the effects of chordwise flexibility on flapping wings at low Reynolds number. The numerical simulations are performed with a partitioned fluid–structure interaction algorithm using artificial compressibility stabilization. The choice of the structural dimensionless parameters is based on scaling arguments and is compared against parameters used by other authors. The different regimes, namely inertia-driven and pressure-driven wing deformations, are presented along with their effects on the topology of the flow and on the performance of a heaving and pitching flapping wing in propulsion regime. It is found that pressure-driven deformations can significantly increase the thrust efficiency if a suitable amount of flexibility is used. Significant thrust increases are also observed in zero pitching amplitude cases. The effects of the second and third deformation modes on the performances of pressure-driven deformation cases are discussed. On the other hand, inertia-driven deformations generally deteriorate aerodynamic performances of flapping wings unless the behavior of the wing deformation is modified by the presence of sustainable superharmonics in a way that produces slight improvements. It is also shown that wing flexibility can act as an efficient passive pitching mechanism that allows fair thrust and better efficiency to be achieved when compared to a rigid pitching–heaving wing.  相似文献   

9.
A three-dimensional numerical simulation of a four-wing (two wings on each side, one on top of another) flapping micro-aerial vehicle (FMAV), known as the Delfly micro, is performed using an immersed boundary method Navier–Stokes finite volume solver at Reynolds numbers of 5500 (forward flight condition). The objective of the present investigation is to gain an insight to the aerodynamics of flapping wing biplane configuration, by making an analysis on a geometry that is simplified, yet captures the major aspects of the wing behavior. The fractional step method is used to solve the Navier–Stokes equations. Results show that in comparison to the Delfly II flapping kinematics (a similar FMAV configuration but smaller flapping stroke angles), the Delfly-Micro flapping kinematics provides more thrust while maintaining the same efficiency. The Delfly-Micro biplane configuration generates more lift than expected when the inclination angle increases, due to the formation of a uniform leading edge vortex. Estimates of the lift produced in the forward flight conditions confirm that in the current design, the MAV is able to sustain forward flight. The potential effect of wing flexibility on the aerodynamic performance in the biplane configuration context is investigated through prescribed flexibility in the simulations. Increasing the wing׳ spanwise flexibility increases thrust but increasing chordwise flexibility causes thrust to first increase and then decrease. Moreover, combining both spanwise and chordwise flexibility outperforms cases with only either spanwise or chordwise flexibility.  相似文献   

10.
An experimental study of a low aspect ratio rectangular membrane wing in a wind tunnel was conducted for a Reynolds number range of 2.4×104–4.8×104. Time-accurate measurements of membrane deformation were combined with the flow field measurements. Analysis of the fluctuating deformation reveals chordwise and spanwise modes, which are due to the shedding of leading-edge vortices as well as tip vortices. At higher angles of attack, the second mode in the chordwise direction becomes dominant as the vortex shedding takes place. The dominant frequencies of the membrane vibrations are similar to those of two-dimensional membrane airfoils. Measured frequency of vortex shedding from the low aspect ratio rigid wing suggests that membrane vibrations occur at the natural frequencies close to the harmonics of the wake instabilities. Vortex shedding frequency from rigid wings shows remarkably small effect of aspect ratio even when it is as low as unity.  相似文献   

11.
This paper presents the results of experiments carried out on mechanical wings undergoing active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the aerodynamic forces generated by the wings. The experiments were repeated for a different reduced frequency, airspeed, flapping and pitching kinematics, geometric angle of attack and wing sections (one symmetric and two cambered airfoils). A specially designed mechanical flapper was used, modelled on large migrating birds. It is shown that, under pitch leading conditions, good thrust generation can be obtained at a wide range of Strouhal numbers if the pitch angle oscillation is adjusted accordingly. Consequently, high thrust was measured at both the lowest and highest tested Strouhal numbers. Furthermore, the work demonstrates that the aerodynamic forces can be sensitive to the Reynolds number, depending on the camber of the wings. Under pitch lagging conditions, where the effective angle of attack amplitude is highest, the symmetric wing was affected by the Reynolds number, generating less thrust at the lowest tested Reynolds value. In contrast, under pure flapping conditions, where the effective angle of attack amplitude was lower but still significant, it was the cambered wings that demonstrated Reynolds sensitivity.  相似文献   

12.
The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.  相似文献   

13.
刘惠祥  何国毅  王琦 《力学学报》2019,51(1):94-102
蜻蜓是自然界优秀的飞行家,滑翔是其常见且有效的飞行模式.蜻蜓优异的飞行能力来源于其翅膀的巧妙结构,褶皱是蜻蜓翅膀上最为显著的结构之一,不仅提高了翅膀的刚度,还改变了其气动特性,而飞行过程中柔性翅膀会产生变形是蜻蜓翅膀的另一特性.为揭示蜻蜓在滑翔时,柔性褶皱前翅的变形,探究褶皱和柔性的共同作用对其气动特性的影响,基于逆向工程,依据前人的测量数据和研究成果,通过三维建模软件建立了蜻蜓三维褶皱前翅的计算流体力学(computational fluiddynamics,CFD)模型和计算结构力学(computational structuralmechanics,CSD)模型,并通过模态分析验证了此模型有足够的精度.基于CFD方法和CFD/CSD双向流固耦合计算方法分别对蜻蜓滑翔飞行时刚性和柔性褶皱前翅的气动特性进行了数值模拟,结果表明,柔性褶皱前翅受气动载荷后,翅脉和翅膜产生形变,柔性前翅上下表面压力差相较于刚性前翅减小了,从而其升力和阻力也减小了,而在大攻角时,变形后的前缘脉诱导出比刚性前翅更强的前缘涡.因此在攻角小于10$^\circ$时刚性前翅的气动特性优于柔性前翅,继续增大攻角,柔性前翅的气动特性则优于刚性前翅.前翅受载后气动响应时间短,翅尖的变形最大,仅仅产生了垂直于翅膀所在平面方向上的变形,而没有发生扭转,翼根处受到应力最大,褶皱上凸部分承受蜻蜓滑翔时前翅的主要载荷.   相似文献   

14.
Numerical models based on the vortex lattice concept using free vortex lines have been developed for the calculation of separated flow about cranked wings. Various separated flow models are developed assuming the flow to be separated along the leading edges of (i) the inner wing, (ii) the entire wing and (iii) the inner wing and the outboard part of the outer wing. To illustrate the effects of separation, attached flow solutions are also obtained. Results are compared with available experimental results. Agreement with separated flow solutions is usually good except at very high incidence.  相似文献   

15.
主动控制翼板抑制悬索桥颤振的研究   总被引:1,自引:0,他引:1  
主动控制翼板是一种新型桥梁气动措施。本文基于非定常气动力理论,推演了安装主动控制翼板后作用在整个桥梁主梁单位长度上气动力表达式,从增加系统扭转阻尼的角度,研究了翼板主动扭转振动参数的选取。在此基础上,对某大跨悬索桥方案进行了二自由度颤振分析,结果表明:合理选取翼板的主动扭转振动参数,主动控制翼板能够有效地提高该桥的颤振稳定性。  相似文献   

16.
Flapping wings are promising lift and thrust generators, especially for very low Reynolds numbers. To investigate aeroelastic effects of flexible wings (specifically, wing’s twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage, and angular speed of the flapping wing motion for different flapping frequencies and for various wings with different chordwise flexibility. Aerodynamic performance of the vehicle for both no wind (hovering) and cruise condition was investigated. Results show how elastic deformations caused by interaction of inertial and aerodynamic forces with the flexible structure may affect specific power consumption. This information was used here to find a more suitable structural design. The best selected design in our tests performs up to 30% better than others (i.e., less energy consumption for the same lift or thrust generation). This measured aerodynamic information could also be used as a benchmarking data for unsteady flow solvers.  相似文献   

17.
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40° are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragonfly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r 2 (the radius of the second moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: when AR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.  相似文献   

18.
The importance of three-dimensional effects for flapping wings is addressed by means of numerical simulation. In particular, the clap–fling–sweep mechanism is examined. The flow at the beginning of the downstroke is shown to be in reasonable agreement with the two-dimensional approximation. After the wings move farther than one chord length apart, three-dimensional effects become essential. Two values of the Reynolds number are considered. At Re=128, the spanwise flow from the wing roots to the wing tips is driven by the centrifugal forces acting on the mass of the fluid trapped in the recirculation bubble behind the wings. It removes the excess of vorticity and delays the periodic vortex shedding. At Re=1400, vortex breakdown occurs past the outer portion of the wings, and multiple vortex filaments are shed into the wake.  相似文献   

19.
A 3D Navier–Stokes solver has been developed to simulate laminar compressible flow over quadrilateral wings. The finite volume technique is employed for spatial discretization with a novel variant for the viscous fluxes. An explicit three-stage Runge–Kutta scheme is used for time integration, taking local time steps according to the linear stability condition derived for application to the Navier–Stokes equations. The code is applied to compute primary and secondary separation vortices at transonic speeds over a 65° swept delta wing with round leading edges and cropped tips. The results are compared with experimental data and Euler solutions, and Reynolds number effects are investigated.  相似文献   

20.
The conditions of realization of regimes, detected in ideal gas theory [1, 2], with a floating Ferri point on the windward side of a wing with supersonic leading edges and breakdown of the conical flow in the presence of turbulent boundary layer separation are studied using experimental data on the flow over conical V-shaped wings. The experiments were carried out on three models of V-shaped wings with sharp leading edges having a convergence angle=40°, apex angles=30, 45, and 90° and lengths along the central chordL=100, 100, and 70 mm, respectively. The free-stream Mach numberM =3, and the unit Reynolds number Re=1.6 ·108 m–1. Boundary layer transition took place 10 mm from the leading edges of the models at a local Reynolds number Re=(1.5–2)·106. Thus, on most of the wing surface the inner shock waves interacted with a turbulent boundary layer. In the experiments we employed; optical methods, which made it possible to observe shadow flow patterns in a plane normal to the rib of the V-shaped wing [3], as well as in the wake behind the wing and its leading edges (Töpler schlieren method); the oil-film visualization method for obtaining data on the position and dimensions of the separation zones and limiting streamline patterns on the surface of the model. The pressure distribution over the wing span was recorded by means of an automated data collection and processing system based on IKD6TD transducers. The errors of the pressure measurements did not exceed 1 %.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 137–150, March–April, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号