首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Isotropic and oriented thin films of rigid-rod, rigid-rod pseudo-ladder, and ladder polymers were ion-bombarded with 84Kr+ to a dose of 4 × 1016 ions/cm2. The bombardment was conducted at two conditions: one at 190 keV energy with 0.12 μA/cm2 current density and the other at 200 keV energy with 2.0 μA/cm2 current density. With the low current density, the polymers developed a uniform ion-bombarded layer of about 0.35 μm at the surface. This layer showed an electrical conductivity on the order of 10?3s/cm at ambient conditions, an enhancement of 6 to 9 orders of magnitude from the pristine polymers. The enhanced conductivity was found to decrease to 10?6s/cm after the implanted krypton was removed by heating under reduced pressure. It suggests that the enhanced conductivity was due to a synergistic effect of structural change of the polymers and chemical doping by the im-planted ions. With the high current density, most polymer films, except that of rigid-rod pseudo-ladder poly(p-(2,5-dihydroxy) phenylene benzobisthiazole) (DPBT), developed an additional fibrous network structure over the uniform ion-bombarded layer. The comparable conductivity, 53 to 157 s/cm, measured for the various ion-bombarded films in-dicated that neither the molecular structure, rigid-rod or ladder, nor the molecular packing order, isotropic or oriented, constituted significant effect on the conductivity of ion-bombarded polymers. Since krypton could not be detected in the polymers ion-bombarded with high current density, the enhanced conductivity was attributed to the structural change of the polymers. The DPBT films ion-bombarded with high current density showed holes of micron size, probably due to the decomposition of hydroxy pendents from the rigid-rod backbone. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
An intractable and fully conjugated, aromatic, heterocyclic rigid-rod polymer poly[1,7-dihydrobenzo[1,2-d:4,5-d′]diimidazo-2,6-diyl-(2-sulfo)-p-phenylene] (sPBI) was derivatized with isophthalic acid for an articulated rigid-rod polymer asPBI. This molecular backbone alternation significantly changed the intrinsic viscosity [η] of sPBI from 9.4 dL/g to 1.1 dL/g for asPBI containing minute (1/50 molar ratio) articulation moiety indicating more a coil-like polymer for asPBI. Both sPBI and asPBI were reacted with 1,3-propanesultone in dimethylsulfoxide containing lithium hydroxide for water–soluble polyelectrolytes sPBI-Li+ and asPBI-Li+, respectively. The polyelectrolytes were dissolved in aqueous solution with up to 5 wt.% of LiI dopant and cast into films. Direct-current conductivity (σ) was measured at room-temperature parallel to the film surface yielding σ=3.2 × 10−3 S/cm and 2.8 × 10−3 S/cm for sPBI-Li+ and asPBI-Li+ (1/15), respectively. X-ray scattering and electron microscopy suggested that the cast films of sPBI-Li+ was in-plane isotropic but out-of-the plane anisotropic, and of asPBI-Li+ was three-dimensionally isotropic. It suggested that cast films of asPBI-Li+ having articulated backbone acquired an isotropic microstructure as well as an isotropic room-temperature σ superior to those of other solid polyelectrolytes.  相似文献   

3.
The conductivity study results of lithium-doped sulfonated PBI, a conjugated rigid rod polymer, poly[(1,7-dihydrobenzo[1,2-d:4,5-d′]dimidazole-2,6-diyl)-2-(2-sulfo)-p-phenylene], derivatized with pendants of propane sulfonate Li+ ionomer are reported. The room-temperature DC four-probe conductivity parallel to the surface of cast films was as large as 8.3 × 10−3 S/cm. Similar measurements with an eight-probe configuration showed no difference between bulk and surface conductivity. The ionic nature of the conductivity was indicated by constant voltage depletion experiments and by secondary ion mass spectroscopy measurements of the residues near the electrodes. The DC two-probe conductivity measured transverse to the sample surface was three to four orders of magnitude smaller than longitudinal conductivity, while the AC two-probe conductivity was even less. Electron microscopy indicated that the films had a layered structure parallel to the surfaces. This structural anisotropy was confirmed by refractive index values obtained from wave-guide experiments and by wide angle X-ray scattering. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2925–2933, 1997  相似文献   

4.
We have prepared pseudo-IPNs (PIPN) of crosslinked PDMS and linear P4BCMU and characterized them by DSC and SEM. The proposed theory about electrical hopping conduction along the linear chain is supported by the observed electrical conductivity properties of these IPNs of conjugated linear polymers. We also studied the low-temperature (T) DC conductivity of the single-phase PIPN and these showed a change from minus to plus in dσ/dt below 120 K. At 4 K, σ was about seven times larger than at 120 K. This reversal is not shown by the bulk polymers composing these PIPNs and polymer blends of linear conjugated polymer in linear insulating host polymer. We speculate that this may indicate some degree of quantum coherence in σ of the one-dimensional pseudo- PIPNs. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Novel multiarmed polymers with ethylene oxide units, [( CH2CH2O)n : 7, n = 3; 8, n= 7.2; 9, n = 11.8, and 12, n = 11.8] were prepared from the reaction of polyethylene glycol monomethyl ethers with acid chlorides of hexakis(3,5-dicarboxyphenoxy)-( 6 ) and hexakis(4-carboxyphenoxy)cyclotriphosphazenes ( 11 ) and conductivities of their Li+ salt complexes were investigated. The glass transition temperatures of the salt-free polymers are in the temperature range −59 to −54°C, indicative of a high degree of reorientational mobility of the arms. When LiClO4 was added to the multiarmed polymers, the Tg values raised monotonically. The extent of Tg elevation was affected by the length of arms and the number of oxygen atoms around cyclotriphosphazene core and increased in the order 7 > 8 > 12 > 9 . The conductivities increased in the order 9 > 8 = 12 > 7 and the maximum conductivities of 4.0 × 10−5 S/cm at 30°C and 6.0 × 10−4 S/cm at 90°C have been achieved for the 9 -Li+ complex with Li+/O = 0.03. Interestingly, the conductivity of 9 -Li+ complexes at constant reduced temperatures increased in the whole concentrations of LiClO4 examined (Li+/O = 0.01–0.2), although the degree of increase in conductivity above Li+/O = 0.06 became small. From the behaviors of Tg and the conductivity of multiarmed polymer–LiClO4 complexes, it appears that the conductivity is governed by relative concentrations of inter- and intramolecular complexes in the polymer matrix. The influence of structural change of the comb-shaped to multiarmed polymers on the conductivity is described. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1839–1847, 1997  相似文献   

6.
Films consisting of a rigid-rod polymer and thermoset resin matrixes were prepared. Poly{(benzo[1,2-d : 5,4-d′]bis(oxazole-2,6-diyl))-1,4-phenylene} (PBO) in polyphosphoric acid (PPA) was blended with 2,6-bis(4-benzocyclobutene) benzo[1,2- d : 5,4-d′]bis(oxazole) ( 1 ), and films were extruded from these solutions. The coagulated films were soluble in methanesulfonic acid (MSA). After heat treatment at 300°C, the films became insoluble in MSA. Crosslinked films were homogeneous and did not show phase segregation between the two components. These were composite films at the molecular level. Transmission electron microscopy (TEM) showed enhanced interlayer integrity and reduced microfibril separation for the molecular composite films as compared to normal PBO film. These films had significantly better torsion and tension delamination resistance. The incorporation of a second component did not sacrifice the tensile properties of PBO film. Thermal stability of these composite films was only slightly lower than that of normal PBO film. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2157–2165, 1997  相似文献   

7.
Molecular depth profiling of polymers by secondary ion mass spectrometry (SIMS) has focused on the use of polyatomic primary ions due to their low penetration depth and high damage removal rates in some polymers. This study is the third in a series of systematic characterizations of the effect of polymer chemistry on degradation under polyatomic primary ion bombardment. In this study, time‐of‐flight SIMS (ToF‐SIMS) was used to assess 5 keV SF5+‐induced damage of ~90 nm thick spin‐cast poly(2‐hydroxyethyl methacrylate) (PHEMA) and ~130 nm thick trifluoroacetic anhydride‐derivatized PHEMA (TFAA‐PHEMA) films. The degradation of these polymers under extended SF5+ bombardment (~2 × 1014 ions cm?2) was compared to determine the effect of the pendant group chemistry on their degradation. The sputter rate and ion‐induced damage accumulation rate of PHEMA were similar to a poly(n‐alkyl methacrylate) of similar pendant group length, suggesting that the addition of a terminal hydroxyl group to the alkyl pendant group does not markedly change the stability of poly(n‐alkyl methacrylates) under SF5+ bombardment. The sputter rate and ion‐induced damage accumulation rate of TFAA‐PHEMA were much higher than a poly(n‐alkyl methacrylate) of similar pendant group length, suggesting that derivatization of the terminal hydroxyl group can significantly reduce degradation of the polymer under SF5+ bombardment. This result is in good agreement with the literature on the thermal and radiation‐induced degradation of fluorinated poly(alkyl methacrylates), which suggests that the electron‐withdrawing fluorinated pendant group increases the probability of depolymerization. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The high-resolution NMR spectra of polyacrylonitrile-β,β-d2 prepared by radical polymerization were determined, and the stereoregularity of the polymer was studied. The NMR spectra of methine protons of polyacrylonitrile-β,β-d2 in dimethyl sulfoxide-d6 and a mixture of nitromethane-d3 and ethylene carbonate showed three partially resolved multiplets. The deuterium-decoupled spectra of the polymer were measured, and three well resolved peaks were observed in the two solvents and dimethylformamide-d7. These three peaks were analyzed by comparison with the NMR spectra of model compounds and polyacrylonitrile-α-d, and they were assigned to isotactic, heterotactic, and syndiotactic triads with decreasing magnetic field. This order seems to be unchanged in other solvents. Triad stereoregularity of the polymer was determined according to the assignment. Polymerizations of acrylonitrile-β,β-d2 by radical initiators between ?78°C and 60°C were explained by the Bernoulli trial propagation step. The polymers had an atactic structure, independent of polymerization temperature. This shows that in free-radical polymerization of acrylonitrile, the chain end is not represented as having any particular stereochemistry. Other stereochemical control is necessary to produce tactic polymers. The triad tacticity of isotactic polyacrylonitrile was also determined.  相似文献   

9.
Ethenol, 1-d-ethenol, O-d-ethenol and Z-2-d-ethenol were prepared by pyrolysis of corresponding 5-norbornenols at 800°C/2 × 10?6 Torr. The most important fragments in the electron impact mass spectrum of ethenol are [C2H3O]+ and CHO+ and CH3˙. The hydrogen atom eliminated from the molecular ion comes mainly from the hydroxyl group (68%) and to a lesser extent from C(1) (25%) and C(2) (7%). The loss of the hydroxyl hydrogen is preceded by rate-determining migration of the hydrogen atom from C(1) onto C(2) to yield CH3C?OH+˙ions that decompose to CH3CO+ and H˙. The loss of deuterium from O-d-ethenol shows a very small primary isotope effect (kH/kD=1.07), whereas a significant effect is observed for the loss of hydrogen from 1-d-ethenol (kH/kD=1.28). The appearance energy of [C2H2DO]+ from 1-d-ethenol, AE=11.32 eV, gives a critical energy for the hydrogen loss, E=203 kJ mol?1, which is 90 kJ mol?1 above the thermochemical threshold for CH3CO++H˙. The appearance energy of CDO+ from 1-d-ethenol was measured as 12.96±0.07 eV, which sets the barrier to isomerization to CH3CDO+˙ at 1121 kJ mol?1. The ionization energy of ethenol was found to be 9.22±0.03 eV.  相似文献   

10.
Graphene oxide (GO) nanoparticles were synthesized by modified Hummers method. The synthesized GO nanoparticles were incorporated in polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend polymers for the preparation of nanocomposite polymer films by solution cast technique. Different characterizations such as XRD, UV–Vis and FTIR were carried-out on to the prepared nanocomposite polymer films. The thermal analysis of the films was studied by DSC. The morphology of PVA/PVP:GO polymer films confirms GO was exfoliated within the PVA/PVP matrix and also reveals the heterogeneous phase of nanocomposite polymer electrolyte systems. From the conductivity studies the highest conductivity of PVA/PVP: GO (0.45: 0.3) was found to be 8.05 × 10–4 S/cm at room temperature. Solid state battery has been fabricated with the configuration of Mg+/(PVA/PVP:GO)/(I2 + C + electrolyte) and its cell parameters were calculated for a constant load of 100 kΩ.  相似文献   

11.
Electrochemically prepared films of conducting polymers of polypyrrole and polythiophene and their blends with polyamide have been investigated by X-ray photoelectron spectroscopy. In the N1s region of the spectra of films containing polypyrrole the peak corresponding to N+ at 402.0 eV is separated from that of neutral N. The intensity of the N+ peak can be correlated with the electrical conductivity of the films and the spectroscopically derived ratio of F/N+ is close to 4 indicating that one BF-4 dopant ion is incorporated for every oxidized nitrogen center. In the spectra of films of polythiophene and its blends peaks corresponding to S and S+ can not be resolved but again the F/C ratio correlates with the electrical conductivity.  相似文献   

12.
Poly(bis-p-phenylenediaminosulphoxide) was prepared by Michael addition of p-bis-N-sulphinylphenylenediamine with p-phenylenediamine at 150°C. Thermal and electrical behaviors of the polymer have been studied. The polymer is found to have increased conductivity possibly due to the participation of lone pairs of electrons on nitrogen and sulphur atoms with σ bond of the macrochain. Thermogravimetric analysis indicates that the polymer is fairly stable than other conducting polymers up to 200°C. The activation energy of the polymer was measured and found to be 13 kcal mol?1.  相似文献   

13.
The recent results of investigations involving the electrochemical formation of polymers containing fullerenes and studies of their properties and applications are critically reviewed. From a structural point of view, these polymers can be divided into four main categories including (1) polymers with fullerenes physically incorporated into the foreign polymeric network without forming covalent bonds, (2) fullerene homopolymers formed via [2+2] cycloaddition, (3) “pearl necklace” polymers with fullerenes mutually linked covalently to form polymer chains, and (4) “charm bracelet” polymers containing pendant fullerene substituents. The methods of electrochemical polymerization of these systems are described and assessed. The structural features and properties of the electrochemically prepared polymers and their chemically synthesized analogs are compared. Polymer films containing fullerenes are electroactive in the negative potential range due to electroreduction of the fullerene moieties. Related films made with fullerenes derivatized with electron-donating moieties as building blocks are electroactive in both the negative and positive potential range. These can be regarded as “double cables” as they exhibit both p- and n-doping properties. Fullerene-based polymers may find numerous applications. For instance, they can be used as charge-storage and energy-converting materials for batteries and photoactive units of photovoltaic cell devices, respectively. They can be also used as substrates for electrochemical sensors and biosensors. Films of the C60/Pt and C60/Pd polymers containing metallic nano-particles of platinum and palladium, respectively, effectively catalyze the hydrogenation of olefins and acetylenes. Laser ablation of electrochemically formed C60/M and C70/M polymer films (M=Pt or Ir) results in fragmentation of the fullerenes leading to the formation of hetero-fullerenes, such as [C59M]+ and [C69M]+.Dedicated to Professor Dr. Alan M. Bond on the occasion of his 60th birthday.  相似文献   

14.
Thermally stable, nonrigid-rod poly(benzobisthiazoles), (R)TPA-PBZT , where R = H, Me, NMe2, and OH, and poly(benzobisoxazoles), (R)TPA-PBO , where R = Me, NMe2 containing electron-rich triarylamine groups with various para-substituents (Rs) on the pendent phenyl ring, were synthesized from either 2,5-diamino-1,4-benzenedithiol dihydrochloride or 2,4-diamino-1,5-benzenediol dihydrochloride and the respective triarylamine-based dinitrile or diacid monomer in polyphosphoric acid. Whereas (R)TPA-PBZT polymers were obtained in moderate molecular weights, analogous (R)TPA-PBO polymers were only prepared in low molecular weights. No lyotropic behaviors, characteristic of the unmodified rigid-rod benzazole polymers, as evidenced by the absence of either stir opalescence or birefringence under crosspolarizers, were observed for these homopolymers at about 10 wt % polymer concentration. Among these polymers, only (Me)TPA-PBZT and (NMe2)TPA-PBZT formed cast films with good mechanical integrity. In their pristine state, their film conductivity values were in the range of 10−10–10−9 S/cm at room temperature. Upon exposure to iodine vapor, their conductivities were increased to the maximal values of 5.0 × 10−5 S/cm ( (Me)TPA-PBZT ) and 4.1 × 10−4 S/cm ( (NMe2)TPA-PBZT ). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1909–1924, 1997  相似文献   

15.
Well-defined polystyrene homopolymers with surface-adhesive triethoxysilyl end group were synthesized via living carbanionic polymerization, epoxide end-functionalization and subsequent hydrosilylation with triethoxysilane. Grafting-to performance of polymers with various molecular weight (Mn = 3000–14,000 g mol−1) to a silicon surface was examined in dependence of reaction time, polymer concentration, solvent and number of alkoxysilyl end groups. Crosslinkable polymers for surface modification were synthesized by statistical carbanionic copolymerization of 4-vinylbenzocyclobutene (4-VBCB) and styrene, followed by epoxide end-functionalization and triethoxysilane modification (Mn = 4000–14,000 g mol−1). The copolymers were characterized by 1H-NMR, THF-SEC, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. In situ 1H-NMR kinetic studies in cyclohexane-d12 provided information regarding the monomer gradient in the polymer chains, with styrene being the more reactive monomer (rs = 2.75, r4-VBCB = 0.23). Thin polymer films on silicon wafers were prepared by grafting-to surface modification under conditions derived for the polystyrene homopolymer. The traceless, thermally induced crosslinking reaction of the benzocyclobutene units was studied by DSC in bulk as well as in 3–6 nm thick polymer films. Crosslinked films were analyzed by atomic force microscopy, ellipsometry, and nanoindentation, showing smooth polymer films with an increased modulus. © 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 181–192  相似文献   

16.
The effect of substrates on the addition polymerization of 1,4-benzenedithiol (BDT) to 1,4-diethynylbenzene (DEB) in the solid state and the electronic properties of the polymers obtained were studied. As the substrate polymer sheets, for instance, PET (poly (ethylene terephthalate)) sheet, ON-6 (oriented nylon-6) sheet and so on having surface free energies Γs from 27.4 to 55.0 erg/cm2 were used. At the monomer sublimation temperature of 60°C, the S wt% (sulfur content) and the cis content of the polymers were not affected by the kind of polymer sheets. However, the molecular weights, M¯n of the polymers polymerized on the polymer sheets were 13,000–30,000, and the values were several times higher than the molecular weight of the polymers polymerized on glass plate. On the other hand, at the sublimation temperature of 82°C, the cis content of the polymers apparently increased with decreasing d-value of the polymer sheets. On X-ray diffraction patterns of monomer mixtures sublimed onto polymer sheets, the diffraction intensities and the diffraction peak positions were concerned with the d-value of the polymer sheets. Using polymer sheets, the diffraction peak intensities of the monomer mixture at 7.73 and 7.58 Å decreased compared with those on glass plate. In contrast, the peak at 3.65 Å, which is a negligibly small peak on glass plate, obviously increased. However, as the d-value of the polymer sheets (PET 3.45 Å; OPP (oriented polypropylene) 5.2 Å) increased, the diffraction peak intensities at 7.73 Å and 7.58 Å gradually increased and the diffraction peak intensity at 3.65 Å gradually decreased. The parallel electrical conductivities (σ||) toward the layered structural polymer on PET, ON-6 and glass plate under air atmosphere were 10−7, 10−9 and 10−11 S/cm, respectively. Under a reduced pressure of 10−3 mmHg, the σ|| values of each polymer lowered by one or two orders of magnitude. On the other hand, the σ|| values of the nonlayered structural polymers under air atmosphere were about 10−11–10−12 S/cm and were independent of the substrates. Even under a reduced pressure of 10−3 mmHg, the σ|| values hardly changed and remained at 10−11–10−12 S/cm. The vertical electrical conductivities (σ) of the layered structural polymers on conductive PET sheet coated by indium tin oxide or NESA glass plates were independent of the substrates and were 10−14 S/cm under air atmosphere. The σ values of the nonlayered structural polymers also exhibited the same values. The reversible change of the amount of the layered structural polymer on PET sheet was also caused by irradiation of the photo-light which is the effective wavelength for the phase transition of the polymers mounted on glass plate. The σ|| value of the layered structural polymer on ON-6 sheet reversibly changed with the amount of the layer structure controlled by the photo-light, that is, the σ|| increased up to about one order of magnitude by the photo-light at 545.6 nm. On the other hand, the || decreased to about one order of magnitude by the photo-light at 539.6 nm. Anisotropic conductivity with respect to σ|| and σ, and oxygen doping mechanisms were discussed in relation to the layer structure of polymers. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Among the NLO processes that have been studied, one of the most visually dramatic is the frequency doubling. In the field of optical information storage this process can provide the conversion of near-infrared laser light from diode lasers into deep blue light. Compared to the more traditional inorganic NLO materials, polymers with polarizable aromatic pendant side groups are increasingly being recognized as the materials of the future. Recently it has been pointed out that the axial ordering spontaneously present in nematic and smectic A polymers can be used to enhance field-induced polar ordering by elongating the orientational distribution function along the electric field direction. Depending on the value of the microscopic order parameters <P>2 and <P>4, the performance may be improved by a factor of 1 to 5 by using LCPs instead of ordinary amorphous polymers for SHG.1-4) Interesting results have been obtained for copolyethers prepared by chemical modification of polyepichlorohydrin with classical 4-cyano-4'-hydroxybiphenyl mesogenic group which possesses NLO properties itself.5-8) These copolyethers afford the opportunity to fine-tune the polymer properties by varying the concentration of the mesogenic side groups. As the concentration is increased, we move from a purely isotropic polymer to a nematic polymer. Spin-coated films have been activated using the corona poling technique and the order parameters <P>2 have been determined from optical absorption spectra. The second harmonic coefficients d33 and d31 have been measured and compared with different statistical models. In view of the great practical importance, characterization of the wavelength dispersion has been carried out. It agrees well with the two-level approximation model. The dynamics of optical SHG has been investigated. It has been shown that both the presence of LC character in the material and the temperature at which the films are stored below Tg are important in determining the stability of the SH coefficients. A polyacrylate and a polymethacrylate bearing the same 4-cyanobiphenyl-based side groups have also been studied.7-8) Of particular interest is the fact that the former is nematic while the latter is purely isotropic at rest, the addition of a methyl group to each structural unit of the polyacrylate backbone creating a higher conformational barrier to mesogen packing. Studies of the temporal and thermal characteristics of the poling process have been performed to: •understand and control the poling process with the intention of maximizing poling induced nonlinearity and stability. •elucidate the influence of the polymer backbone, our data including the use of the same mesogenic unit attached to increasing flexible backbones (e.g. polymethacrylate and polyether). •establish if, in the isotropic cases, noticeable axial order can be induced by the poling field, especially when the system is pulled through nematic/isotropic transition by the electric field.  相似文献   

18.
以PEO为基质的离子及质子导电聚合物电解质   总被引:4,自引:0,他引:4       下载免费PDF全文
本文以PEO-LiClO4为基质,在其中加入适量的纳米氧化锌及氧化锡,制备PEO-LiClO4-ZnO及PEO-LiClO4-SnO2离子导电聚合物电解质膜,测定了复合电解质膜的电导率,并探讨了纳米粒子与PEO链的相互作用,提出复合电解质膜的电导率提高的主要影响因素。本文还合成以PEO为基质的PEO-12-钨硅酸质子导电聚合物电解质膜,讨论12-钨硅酸的加入对PEO的构型及Keggin离子的影响并分析PEO-12-钨硅  相似文献   

19.
Poly (oligoether methacrylate-co-acrylonitrile) s, P (MEOn- AN), with oligoether pendants of different lengths were synthesized and the ion conduction property of their Li-salt complexes was studied as the function of polymer structure. At proper copolymer composition, lithium concentration and pendant length, the ion conductivity reaches 7.0×10~(-5)S/cm at ambient temperature, together with improved mechanical strength. The ion transport in the polymer media is assisted by segmental relaxation, which is confirmed both by the consistency between ion conductivity and T_g and by the study of TSC.  相似文献   

20.
The title polymers PNIPzS4 and PCuPzS4 were synthesized by reaction of phthalonitrile and 2,3,5,6‐tetracyano‐1,4‐dithiin with corresponding metal salt. Their structures and properties were characterized by associating the experimental results with MO and Cl calculations of the dimer molecule as model polymer in the ZINDO method. It has been found that the PNiPzS4 (or PCuPzS4) shows the semiconductivity at T < 253 K (or 260 K) and T > 278 K (or 286 K) and the conductivity increase with a hoist of temperature at 253 K (or 260 K) < T < 278 K (or 286 K). The conductivity σ of the PNiPzS4 and PCuPzS4 under pressure 13.73 MPa is 1.56×10?4 and 9.33×10?5 S/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号