首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotopic compositions (delta2H and delta18O) of daily precipitation collected in the period from October 2002 to March 2003 and monthly precipitation in the period from 2001 to 2003, as well as the corresponding meteorological data (temperature, amount of precipitation), all collected in Zagreb, Croatia, are presented. delta2H and delta18O values, both daily and monthly, show large variations due to large temperature variations and the different origin of the air masses. Variations are larger for daily samples than for composite monthly samples. Good correlation of delta18O with temperature is obtained for both types of samples. On the basis of the correlation between delta2H and delta18O, the local meteoric water line is close to the global meteoric water line. Deuterium excess of both daily and monthly precipitation indicates that in the Zagreb area, the influence of air masses from the Mediterranean area prevails in the autumn period.  相似文献   

2.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The delta18O vs. delta2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The delta18O values of the drip water show little variability (<0.6 per thousand), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site. The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water delta18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the delta18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall delta18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.dagger.  相似文献   

3.
The stable isotope composition of hydrogen (delta(2)H) and oxygen (delta(18)O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line delta(2)H=7.8 (+/-0.2) delta(18)O+7.3(+/-1.6) (r(2)=0.98, n=60, sigma=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean delta(2)H and delta(18)O values of precipitation were-65+/-27 per thousand and-9.4+/-3.4 per thousand, respectively. Good correlation between delta(18)O values (r approximately >0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from-94 to-60 per thousand for delta(2)H and from-11.0 to approximately 5.7 per thousand for delta(18)O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

4.
Results of stable isotope measurements (δ2H, δ18O) of daily grab samples, taken from the Danube River at Tulln (river km 1963) during 2012, show seasonal and short-term variations depending on the climatic/hydrological conditions and changes in the catchment area (temperature changes, heavy rains and snow melt processes). Isotope ratios in river water clearly reflect the isotopic composition of precipitation water in the catchment area since evaporation influences play a minor role. Average δ2H and δ18O values in 2012 are?78‰ and?11.0‰, respectively, deuterium excess averages 10‰. The entire variation amounts to 1.8‰ in δ18O and 15‰ in δ2H. Quick changes of the isotopic composition within a few days emphasise the necessity of daily sampling for the investigation of hydrological events, while monthly grab sampling seems sufficient for the investigation of long-term hydro-climatic trends. 3H results show peaks (half-width 1–2 days, up to about 150 TU) exceeding the regional environmental level of about 9 TU, probably due to releases from nuclear power plants.  相似文献   

5.
The Tanour spring is one of the several karst springs located in the northern part of Jordan. Water samples from the Tanour spring and precipitation were collected in the area of Ajloun in NW Jordan for the analysis of stable oxygen and hydrogen isotopes to evaluate the spring response to precipitation events. Rainwater and snow samples were collected from different elevations during winters of 2013–2014 and 2014–2015. In addition, spring samples were collected between December 2014 and March 2015. δ18O values in rainwater vary from ?3.26 to ?17.34?‰ (average: ?7.84?±?3.23?‰), while δ2H values range between ?4.4 and ?110.4?‰ (average: ?35.7?±?25.0?‰). Deuterium excess ranges from 17.8 to 34.1?‰ (average: 27.1?±?4.0?‰). The Local Meteoric Water Line for the study area was calculated to be δ2H?=?7.66*δ18O?+?24.43 (R2?=?0.98). Pre-event spring discharge showed variation in δ18O (range ?6.29 to ?7.17?‰; average ?6.58?±?0.19?‰) and δ2H values (range ?28.8 to ?32.7?‰; average: ?30.5?±?1.0?‰). In contrast, δ18O and δ2H rapidly changed to more negative values during rainfall and snowmelt events and persisted for several days before returning to background values. Spring water temperature, spring discharge, and turbidity followed the trend in isotopic composition during and after the precipitation events. The rapid change in the isotopic composition, spring discharge, water temperature, and turbidity in response to recharge events is related to fast water travel times and low storage capacity in the conduit system of the karst aquifer. Based on the changes in the isotopic composition of spring water after the precipitation events, the water travel time in the aquifer is in the order of 5–11 days.  相似文献   

6.
The stable isotopic compositions of all major daily rain fall samples (n?=?113) collected from Kozhikode station in Kerala, India, for the year 2010 representing the pre-monsoon, southwest and northeast monsoon seasons are examined. The isotopic variations δ18O, δ2H and d-excess in daily rainfall ranged from δ18O: ?4.4 to 2?‰, δ2H: ?25.3 to 13.8?‰, and d-excess: ?2.4 to 15.3?‰; δ18O: ?9.7 to ?0.6?‰, δ2H: ?61.7 to 5.3?‰, and d-excess 5.8 to 17.4?‰; δ18O ?11.3 to ?1.4?‰, δ2H: ?75.3 to 0.9?‰, and d-excess: 8.8 to 21.3?‰ during the pre-, southwest and northeast monsoon periods, respectively. Thus, daily rainfall events during two monsoon periods had a distinct range of isotopic variations. The daily rain events within the two monsoon seasons also exhibited periodic variations. The isotopic composition of rain events during pre-monsoon and a few low-intensity events during the southwest monsoon period had imprints of secondary evaporation. This study analysing the stable isotopic characteristics of individual rain events in southern India, which is influenced by dual monsoon rainfall, will aid in a better understanding of its mechanism.  相似文献   

7.
ABSTRACT

The study area is the Namibian part of the Cuvelai-Etosha Basin (CEB), located in central northern Namibia. The CEB is home to 40 % of Namibia’s population, and most of the people live in rural areas. These people depend on both surface and groundwater resources which are limited in this dryland (mean annual rainfall ranging from 250 to 550?mm/a). The isotopic signatures of δ18O and δ2H from water samples (n?=?61) collected over a course of 9 years from various research projects and existing (but mainly unpublished) data of meteoric water of the CEB (10 sites) were evaluated and local meteoric water lines (LMWLs) developed. Further, the data is discussed in the context of seasonal characteristics and trends and compared to available data from the Global Network of Isotopes in Precipitation (GNIP) for the southern African region. Our results extend the portfolio of previously published LMWLs for southern Africa and provide a more precise baseline for any isotope-based study in that region. The slope of the LMWL from the GNIP stations correlates with latitude. This correlation cannot be found within the CEB. The dominant control on the isotopic signature of the CEB of precipitation is seasonal.  相似文献   

8.
Water samples from three quarry lakes and the surrounding fractured rock aquifer were investigated for delta18O and delta2H (H2O), delta15N and delta18O (NO3-), as well as anions and cations. Lake water and groundwater can be distinguished by their different chemical and isotopic composition. Because of evaporation processes, 18O and 2H are enriched in the lake water and can be used as natural tracers for the water dynamic of the lakes. The groundwater is characterised by high nitrate concentrations (up to 120 mg/l). Lake internal processes reduce the nitrate concentration in the quarry lakes. However, no enrichment of delta15N and delta18O in nitrate, typical for microbial nitrate degradation, is observed in the lake water. Because of the complex flow paths in the fractured rock aquifer and the intense chemical transformations at the interface between groundwater and lake water, isotopic and hydrochemical data of lake water and groundwater alone do not conclusively explain hydrological and hydrochemical processes of the investigated lake-groundwater system.  相似文献   

9.
Seasonal and spatial variation in δ18O and δ2H in rainwater was determined in three selected transects across Sri Lanka, the tropical island in the Indian Ocean. Local meteoric water lines (LMWLs) for three distinguished climatic zones; wet, dry and intermediate were constructed. LMWLs show slight variations in their gradients and respective d-excess values, depending on the air moisture origin, circulation and environmental conditions of each climatic zone. The elevation effect and amount effect could be identified but the continental effect is not significantly seen in the isotope composition of rain in the concerned areas. The results reasonably revealed that the distinct rainfall regimes; two monsoonal rains and two convectional (inter-monsoon) rains have characteristic isotopic signatures. Also the impact of (i) terrestrial and oceanic moisture sources, (ii) depression and cyclonic conditions of the Bay of Bengal, and (iii) topography of the country on the variation of the isotopic composition of rain in Sri Lanka could be satisfactorily identified.  相似文献   

10.
For certain remote areas like Mongolia, field-based precipitation, surface and ground water isotopic data are scarce. So far no such data exist for the Mongolian Gobi desert, which hinders the understanding of isotopic fractionation processes in this extreme, arid region. We collected 26 event-based precipitation samples, 39 Bij river samples, and 75 samples from other water bodies in the Dzungarian Gobi in SW Mongolia over a period of 16 months for hydrogen and oxygen stable isotope analysis. δ2H and δ18O values in precipitation show high seasonal variation and cover an extreme range: 175?‰ for δ2H and 24?‰ for δ18O values. The calculated local meteoric water line (LMWL) shows the isotopic characteristics of precipitation in an arid region. Individual water samples fall into one of three groups: within, above or below the 95?% confidence interval of LMWL. Data presented provide a basis for future studies in this region.  相似文献   

11.
An isotopic monitoring was undertaken in 2012–2014 at Lake ?abińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ18O and δ2H in the precipitation, lake water column, inflows and outflow, δ18O and δ13C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ18O and δ2H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water’s isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ18O of the carbonate fraction in the sediment traps depends on the δ18O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ18O and δ13C in precipitated carbonate.  相似文献   

12.
This paper presents the stable isotope data of oxygen (δ18O) and hydrogen (δ2H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009–2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ18O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ18O in groundwater.  相似文献   

13.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The δ18O vs. δ2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The δ18O values of the drip water show little variability (<0.6‰), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site.

The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water δ18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the δ18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall δ18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.? Revised version of a paper presented at the 9th, Symposium of the European Society for Isotope Research (ESIR), 23 to 28 June 2007, Cluj-Napoca, Romania.   相似文献   

14.
We produced continuous records of sea surface salinity and isotopic composition from 1998 to 2004 at Ishigaki Island, southwest Japan, and found clear seasonal variations in salinity and oxygen isotopic composition and increasing trends of them after 1999. These increasing trends could be principally due to the decreasing difference between local precipitation (P) and evaporation (E), as a result of the reduction of horizontal vapour transport from adjacent oceans. When samples collected in heavy rainfall events were excluded, the average Δδ18O/Δ salinity slope was obtained as 0.31, 0.35 in summer and 0.28 in winter. Estimated E/P ratios based on the isotopic box model are in good agreement with the ratios of independently estimated E to observed P.  相似文献   

15.
This paper describes the results of isotopic analyses of (i) hydrogen and oxygen in water (delta DH2O and delta18OH2O ) and (ii) sulphur and oxygen in sulphates (delta34Ssulphate and delta18Osulphate) from atmospheric precipitation collected within a one-year period between 25 May 2004 and 25 May 2005 in Wroc?aw (SW Poland). The resulting equation of Local Meteoric Water Line for Wroc?aw is delta D=6.373xdelta18O-0.047, (r2=0.97, n=32). The delta34Ssulphate varies from 1.1 to 4.2 per thousand (with an average of 2.5 per thousand), delta18Osulphate varies from 9.0 to 16.7 per thousand (with an average of 13.8 per thousand) and delta18OH2O varies from-0.8 to-16.3 per thousand (with an average of-8.2 per thousand). The above results indicate two main sources of sulphates in Wroc?aw precipitation: (i) low-temperature secondary sulphates forming in situ in Wroc?aw from the atmospheric SO2 as well as precipitation water (heterogeneous and homogeneous pathways oxidation) and (ii) high-temperature primary sulphates forming in rapid high-temperature hydratation of SO3- in an immediate proximity of industrial chimneys. We hypothesise that the secondary low-temperature type of sulphates is probably formed from the local sulphur and oxygen reservoirs, whereas the primary high-temperature type is allochthonous and it is probably transported from industrial areas located outside of Wroc?aw.  相似文献   

16.
The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18O/16O and 2H/H ratios. A parsimonious four-variable regression model (r2?=?0.52) was able to predict daily δ18O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.  相似文献   

17.
Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ18O and δ2H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.  相似文献   

18.
Abstract D and (18)O distributions were investigated in Antarctic precipitation (falling snow) and in water vapour to study their dependance on season and sampling site. Long-term sampling at the former German Georg Forster Station during 1978-93 and at the Japanese Syowa Station during 1994-97 allow conclusions about the present seasonal isotopic variations in the water inflow to Antarctica. The δD and δ(18)O values of precipitation at these East Antarctic coastal stations were compared with corresponding data from the West Antarctic Georg von Neumayer and Halley stations. The monthly means of these long-term data sets show typical hysteresis-like seasonal patterns of isotopic composition. Significant time lags exist regarding station temperatures, while water vapour δD values do not show such hysteresis patterns. Here, half-yearly and even quarter-yearly time components were found by Fourier analysis. Attempts were made to describe the variation in δD and δ(18)O values of water vapour and precipitation as well as in the resulting deuterium excess by the mixed cloud isotopic model (MCIM) of Ciais and Jouzel.  相似文献   

19.
Stable hydrogen and oxygen isotopes were analysed in water samples from the River Danube and its tributaries during a longitudinal survey performed in August 2005 on Serbian territory. Danube river water data ranged from-80 per thousand to-66 per thousand for delta2H, and from-11.2 per thousand to-9.3 per thousand for delta18O with delta values increasing downstream. The isotopic signatures of the adjacent tributaries (the Tisza, the Sava and the Velika Morava) sampled at the locations close to their confluence with the Danube (Titel, Ostruznica and Ljubicevski most, respectively) just about the time of the campaign were enriched (-67 per thousand and-63 per thousand for delta2H, and-9.3 per thousand and-8.9 per thousand for delta18O) with respect to the Danube water because of their catchment effects. Hydrogen and oxygen stable isotope values were used in combination with measured physico-chemical and biological parameters to trace hydrological and transport processes in these river systems. The mixing relationships between the Danube main stream and its tributaries were estimated using the mass balance for isotopic composition and electrical conductivity as conservative parameters. Evidence of an incomplete mixing process at the Centa location, 8 km below the confluence of the Tisza river, with its participation of 88% was shown by its oxygen-18 content. The correlations between river water isotope composition and physico-chemical and biological parameters are discussed.  相似文献   

20.
Abstract

D and 18O distributions were investigated in Antarctic precipitation (falling snow) and in water vapour to study their dependance on season and sampling site. Long-term sampling at the former German Georg Forster Station during 1978–93 and at the Japanese Syowa Station during 1994–97 allow conclusions about the present seasonal isotopic variations in the water inflow to Antarctica. The δD and δ18O values of precipitation at these East Antarctic coastal stations were compared with corresponding data from the West Antarctic Georg von Neumayer and Halley stations. The monthly means of these long-term data sets show typical hysteresis-like seasonal patterns of isotopic composition. Significant time lags exist regarding station temperatures, while water vapour δD values do not show such hysteresis patterns. Here, half-yearly and even quarter-yearly time components were found by Fourier analysis. Attempts were made to describe the variation in δD and δ18O values of water vapour and precipitation as well as in the resulting deuterium excess by the mixed cloud isotopic model (MCIM) of Ciais and Jouzel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号