首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The δ18O vs. δ2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The δ18O values of the drip water show little variability (<0.6‰), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site.

The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water δ18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the δ18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall δ18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.? Revised version of a paper presented at the 9th, Symposium of the European Society for Isotope Research (ESIR), 23 to 28 June 2007, Cluj-Napoca, Romania.   相似文献   

2.
The stable isotopic composition (delta(2)H and delta(18)O) of short-term (daily) precipitation collected from October 2002 to September 2003 at two stations in a coastal, karstic area in south-western Slovenia was investigated. In addition, monthly composite samples were collected and analysed for comparison with amount-weighted monthly means. The delta(2)H and delta(18)O values obtained show a wide range and reflect seasonal climatic variations. Deuterium excess and local meteoric water lines (LMWLs) were determined and cumulative frequency analysis and coincidence tests were performed. The statistical coincidence test showed that the LMWLs calculated from monthly data for Portoroz and Kozina are coincident, but the LMWLs calculated from daily precipitation events are not. This difference could be explained by the greater variance of the isotopic composition of daily precipitation in comparison to monthly composite samples and also to the influence of evaporation during events below<1 mm at Portoroz during the extremely dry and warm spring-summer season of 2003. Finally, synoptic maps and backward trajectories of a selected precipitation event showed that changes of isotopic composition are related to mixing of air masses originating from the continent and Mediterranean cyclogenesis.  相似文献   

3.
Abstract D and (18)O distributions were investigated in Antarctic precipitation (falling snow) and in water vapour to study their dependance on season and sampling site. Long-term sampling at the former German Georg Forster Station during 1978-93 and at the Japanese Syowa Station during 1994-97 allow conclusions about the present seasonal isotopic variations in the water inflow to Antarctica. The δD and δ(18)O values of precipitation at these East Antarctic coastal stations were compared with corresponding data from the West Antarctic Georg von Neumayer and Halley stations. The monthly means of these long-term data sets show typical hysteresis-like seasonal patterns of isotopic composition. Significant time lags exist regarding station temperatures, while water vapour δD values do not show such hysteresis patterns. Here, half-yearly and even quarter-yearly time components were found by Fourier analysis. Attempts were made to describe the variation in δD and δ(18)O values of water vapour and precipitation as well as in the resulting deuterium excess by the mixed cloud isotopic model (MCIM) of Ciais and Jouzel.  相似文献   

4.
The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6% and 0.2% in deltaD and delta18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water deltaD and delta18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of > or = 5 degrees C as calculated using the adiabatic lapse rate. Since the deltaD and delta18O values of stem and leaf water varied little for these trees over this elevation/temperature transect, any differences in tree-ring cellulose deltaD and delta18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the deltaD and delta18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.  相似文献   

5.
Abstract

D and 18O distributions were investigated in Antarctic precipitation (falling snow) and in water vapour to study their dependance on season and sampling site. Long-term sampling at the former German Georg Forster Station during 1978–93 and at the Japanese Syowa Station during 1994–97 allow conclusions about the present seasonal isotopic variations in the water inflow to Antarctica. The δD and δ18O values of precipitation at these East Antarctic coastal stations were compared with corresponding data from the West Antarctic Georg von Neumayer and Halley stations. The monthly means of these long-term data sets show typical hysteresis-like seasonal patterns of isotopic composition. Significant time lags exist regarding station temperatures, while water vapour δD values do not show such hysteresis patterns. Here, half-yearly and even quarter-yearly time components were found by Fourier analysis. Attempts were made to describe the variation in δD and δ18O values of water vapour and precipitation as well as in the resulting deuterium excess by the mixed cloud isotopic model (MCIM) of Ciais and Jouzel.  相似文献   

6.
An isotopic monitoring was undertaken in 2012–2014 at Lake ?abińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ18O and δ2H in the precipitation, lake water column, inflows and outflow, δ18O and δ13C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ18O and δ2H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water’s isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ18O of the carbonate fraction in the sediment traps depends on the δ18O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ18O and δ13C in precipitated carbonate.  相似文献   

7.
Tropical rainfall isotopic composition results from complex processes. The climatological and environmental variability in East Africa increases this complexity. Long rainfall isotope datasets are needed to fill the lack of observations in this region. At Kisiba Masoko, Tanzania, rainfall and rain isotopic composition have been monitored during 6 years. Mean year profiles allow to analyse the seasonal variations. The mean annual rainfall is 2099?mm with a rain-weighted mean composition of ?3.2?‰ for δ18O and ?11.7?‰ for δ2H. The results are consistent with available data although they present their own specificity. Thus, if the local meteoric water line is δ2H?=?8.6 δ18O?+?14.8, two seasonal lines are observed. The seasonality of the isotopic composition in rain and deuterium excess has been compared with precipitating air masses backtracking trajectories to characterize a simple scheme of vapour histories. The three major oceanic sources have two moisture signatures with their own trajectory histories: one originated from the tropical Indian Ocean at the beginning of the rainy season and one from the Austral Ocean at its end. The presented isotopic seasonality depends on the balance of the intertropical front and provides a useful dataset to improve the knowledge about local processes.  相似文献   

8.
The differences between δ18O and δ2H in throughfall and open rainfall were studied for a selected typhoon event in a watershed within the Taihu Lake drainage basin, eastern China. In this event, the isotopic composition of precipitation exhibited a strong temporal variation. Comparison results show that an isotopic composition difference existed not only between gross rainfall and average incremental rainfall, but also between different calculation methods used to derive average. The differences between incremental precipitation and throughfall isotopic composition were observed in this study. Considering the temporal variation in rainfall and throughfall during this typhoon event, the incremental value can have an effect on hydrograph separation more accurately in evaluating the importance of ‘new’ water. In addition, isotopic fluctuations of surface water and groundwater differed from those of rainfall and throughfall throughout the event.  相似文献   

9.
Stable isotopic compositions (delta2H and delta18O) of daily precipitation collected in the period from October 2002 to March 2003 and monthly precipitation in the period from 2001 to 2003, as well as the corresponding meteorological data (temperature, amount of precipitation), all collected in Zagreb, Croatia, are presented. delta2H and delta18O values, both daily and monthly, show large variations due to large temperature variations and the different origin of the air masses. Variations are larger for daily samples than for composite monthly samples. Good correlation of delta18O with temperature is obtained for both types of samples. On the basis of the correlation between delta2H and delta18O, the local meteoric water line is close to the global meteoric water line. Deuterium excess of both daily and monthly precipitation indicates that in the Zagreb area, the influence of air masses from the Mediterranean area prevails in the autumn period.  相似文献   

10.
The stable isotope composition of hydrogen (delta(2)H) and oxygen (delta(18)O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line delta(2)H=7.8 (+/-0.2) delta(18)O+7.3(+/-1.6) (r(2)=0.98, n=60, sigma=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean delta(2)H and delta(18)O values of precipitation were-65+/-27 per thousand and-9.4+/-3.4 per thousand, respectively. Good correlation between delta(18)O values (r approximately >0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from-94 to-60 per thousand for delta(2)H and from-11.0 to approximately 5.7 per thousand for delta(18)O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

11.
Water samples from three quarry lakes and the surrounding fractured rock aquifer were investigated for delta18O and delta2H (H2O), delta15N and delta18O (NO3-), as well as anions and cations. Lake water and groundwater can be distinguished by their different chemical and isotopic composition. Because of evaporation processes, 18O and 2H are enriched in the lake water and can be used as natural tracers for the water dynamic of the lakes. The groundwater is characterised by high nitrate concentrations (up to 120 mg/l). Lake internal processes reduce the nitrate concentration in the quarry lakes. However, no enrichment of delta15N and delta18O in nitrate, typical for microbial nitrate degradation, is observed in the lake water. Because of the complex flow paths in the fractured rock aquifer and the intense chemical transformations at the interface between groundwater and lake water, isotopic and hydrochemical data of lake water and groundwater alone do not conclusively explain hydrological and hydrochemical processes of the investigated lake-groundwater system.  相似文献   

12.
In the present study, rates of litter decomposition and microbial biomass nitrogen were monitored over an 8-month period in a young broadleaf plantation (18 y) and in an old floodplain forest. Moreover, delta13C and delta15N temporal variations within soil profiles were evaluated at both sites. Rates of litter decomposition were higher in spring and autumn than in summer, in both forests. At the end of the observation period the percentage of original litter remaining was not statistically different between the young and the old forest and accounted for 60-70% of the original amount. Microbial biomass nitrogen in the remaining litter and the percentage of litter mass lost during decomposition were positively correlated. The difference in litter quality affected the decomposition rate and also the changes in carbon isotopic composition during the decomposition process. In contrast, 15N isotopic signatures showed a similar trend in the litter of the two forests irrespective of the litter quality. Although delta13Csoil and delta15Nsoil showed considerable temporal variation they increased with depth in the soils of both sites but their seasonal changes did not reflect those of the decomposing litter. Within the same soil horizon, both delta13C and delta15N showed similar seasonal trends in the soils of the two forests, suggesting the involvement of environmental factors acting at regional level, such as soil temperature and rainfall variations, in regulating seasonal delta13C and delta15N soil variations.  相似文献   

13.
Abstract

The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6‰ and 0.2‰ in δD and δ18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water δD and δ18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of ≥ 5°C as calculated using the adiabatic lapse rate. Since the δD and δ18O values of stem and leaf water varied little for these trees over this elevation/ temperature transect, any differences in tree-ring cellulose δD and δ18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the δD and δ18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.  相似文献   

14.
We produced continuous records of sea surface salinity and isotopic composition from 1998 to 2004 at Ishigaki Island, southwest Japan, and found clear seasonal variations in salinity and oxygen isotopic composition and increasing trends of them after 1999. These increasing trends could be principally due to the decreasing difference between local precipitation (P) and evaporation (E), as a result of the reduction of horizontal vapour transport from adjacent oceans. When samples collected in heavy rainfall events were excluded, the average Δδ18O/Δ salinity slope was obtained as 0.31, 0.35 in summer and 0.28 in winter. Estimated E/P ratios based on the isotopic box model are in good agreement with the ratios of independently estimated E to observed P.  相似文献   

15.
Based on the monthly δ18O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ18O in precipitation (δ18OPPT) and runoff (δ18OSUR) are discussed. The δ18OPPT and δ18OSUR values range from?2.75 to?14.12 ‰ (annual mean value=?7.13 ‰ ) and from?2.30 to?8.56 ‰, respectively. The seasonal variation of δ18OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ18OSUR in runoff of the rivers and δ18OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.  相似文献   

16.
Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (delta18O: -9.1 per thousand to -9.0 per thousand, conductivity: 217-410 microS/cm) was distinctly different from groundwater (delta18O: -7.1 per thousand to -6.6 per thousand, conductivity: 600-900 microS/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (<30 cm), whereas trees further from the river relied on deeper ground water (>1 m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.  相似文献   

17.
By using 233 isotope samples, we investigated the spatial and temporal variations of δ18O and δ2H in precipitation and surface water, and the contribution of different water sources in the rivers within the Tarim River Basin (TRB), which receives snow/glacier meltwater, groundwater, and rainfall. Our study revealed a similar seasonal pattern of precipitation δ18O and δ2H at both the north and south edges of the basin, indicating the dominant effect of westerly air masses in the summer and the combined influence of westerly and polar air masses during the winter, although the southern part showed more complex precipitation processes in the summer. River water in the basin has relatively large temporal variations in both δ18O and δ2H showing a distinct seasonal pattern with lower isotope values in May than in September. Higher d-excess values throughout the year in the Aksu river and the Tizinafu river suggest that water may be intensively recycled in the mountains of the TRB. Based on isotopic hydrograph separation, we found that groundwater is the main water source that discharges the entire basin although individual rivers vary.  相似文献   

18.
Stable hydrogen and oxygen isotopes were analysed in water samples from the River Danube and its tributaries during a longitudinal survey performed in August 2005 on Serbian territory. Danube river water data ranged from-80 per thousand to-66 per thousand for delta2H, and from-11.2 per thousand to-9.3 per thousand for delta18O with delta values increasing downstream. The isotopic signatures of the adjacent tributaries (the Tisza, the Sava and the Velika Morava) sampled at the locations close to their confluence with the Danube (Titel, Ostruznica and Ljubicevski most, respectively) just about the time of the campaign were enriched (-67 per thousand and-63 per thousand for delta2H, and-9.3 per thousand and-8.9 per thousand for delta18O) with respect to the Danube water because of their catchment effects. Hydrogen and oxygen stable isotope values were used in combination with measured physico-chemical and biological parameters to trace hydrological and transport processes in these river systems. The mixing relationships between the Danube main stream and its tributaries were estimated using the mass balance for isotopic composition and electrical conductivity as conservative parameters. Evidence of an incomplete mixing process at the Centa location, 8 km below the confluence of the Tisza river, with its participation of 88% was shown by its oxygen-18 content. The correlations between river water isotope composition and physico-chemical and biological parameters are discussed.  相似文献   

19.
The paper deals with analytical and procedural aspects of delta18O and delta2H determination in saline oil-associated waters. The main objective of the study was to show experimentally the qualitative and quantitative applicability of the simple vacuum distillation of saline oil-associated waters while routine procedures of water isotopic analyses are applied. Additionally, two standard off-line techniques of delta2H determination in water - the zinc and the chromium method - have been compared. Each time a typical isotope salt effect has been tracked on the Dead Sea water. The results clearly show that application of the simple vacuum distillation improve the accuracy and reproducibility of delta2H determinations, especially in chromium off-line technique which appeared to be more sensitive to water salinity. The simple vacuum distillation does not improve the quality of delta18O determinations in the range of water salinities studied. Its application to high concentrated brines (for example, Dead Sea water) decreases the time of equilibration but still propagate the isotopic error connected with low water activity (in the case of 18O/16O ratio) and the incomplete water extraction from the remaining salts (in the case of 2H/1H ratio); in consequence, its time-consuming application seems to be baseless.  相似文献   

20.
This paper describes the results of isotopic analyses of (i) hydrogen and oxygen in water (delta DH2O and delta18OH2O ) and (ii) sulphur and oxygen in sulphates (delta34Ssulphate and delta18Osulphate) from atmospheric precipitation collected within a one-year period between 25 May 2004 and 25 May 2005 in Wroc?aw (SW Poland). The resulting equation of Local Meteoric Water Line for Wroc?aw is delta D=6.373xdelta18O-0.047, (r2=0.97, n=32). The delta34Ssulphate varies from 1.1 to 4.2 per thousand (with an average of 2.5 per thousand), delta18Osulphate varies from 9.0 to 16.7 per thousand (with an average of 13.8 per thousand) and delta18OH2O varies from-0.8 to-16.3 per thousand (with an average of-8.2 per thousand). The above results indicate two main sources of sulphates in Wroc?aw precipitation: (i) low-temperature secondary sulphates forming in situ in Wroc?aw from the atmospheric SO2 as well as precipitation water (heterogeneous and homogeneous pathways oxidation) and (ii) high-temperature primary sulphates forming in rapid high-temperature hydratation of SO3- in an immediate proximity of industrial chimneys. We hypothesise that the secondary low-temperature type of sulphates is probably formed from the local sulphur and oxygen reservoirs, whereas the primary high-temperature type is allochthonous and it is probably transported from industrial areas located outside of Wroc?aw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号