首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Semiconducting ZnO hierarchical nanostructure, where ZnO nanonails were grown on ZnO nanowires, has been fabricated under control experiment with a mixture of ZnO nanopowders and Sn metal powders. Sn nanoparticles are located at or close to the tips of the nanowires and the growth branches, serving as the catalyst for the vapor-liquid-solid growth mechanism. The morphology and microstructure of ZnO nanowire and nanonail were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The long and straight ZnO nanowires grow along [0001] direction. ZnO nanonails are aligned radially with respect to the surface the ZnO nanowire. The long axis direction of nanonails forms an angle of ∼30° to the [0001] direction.  相似文献   

2.
Catalytic growth and characterization of gallium nitride nanowires.   总被引:12,自引:0,他引:12  
The preparation of high-purity and -quality gallium nitride nanowires is accomplished by a catalytic growth using gallium and ammonium. A series of catalysts and different reaction parameters were applied to systematically optimize and control the vapor-liquid-solid (VLS) growth of the nanowires. The resulting nanowires show predominantly wurtzite phase; they were up to several micrometers in length, typically with diameters of 10-50 nm. A minimum nanowire diameter of 6 nm has been achieved. Temperature dependence of photoluminescence spectra of the nanowires revealed that the emission mainly comes from wurtzite GaN with little contribution from the cubic phase. Moreover, the thermal quenching of photoluminescence was much reduced in the GaN nanowires. The Raman spectra showed five first-order phonon modes. The frequencies of these peaks were close to those of the bulk GaN, but the modes were significantly broadened, which is indicative of the phonon confinement effects associated with the nanoscale dimensions of the system. Additional Raman modes, not observed in the bulk GaN, were found in the nanowires. The field emission study showing notable emission current with low turn-on field suggests potential of the GaN nanowires in field emission applications. This work opens a wide route toward detailed studies of the fundamental properties and potential applications of semiconductor nanowires.  相似文献   

3.
Large-quantity single-crystal SnO(2) nanowires coated with quantum-sized ZnO nanocrystals (nc-ZnO/SnO(2) nanowires) were directly synthesized by thermal evaporation of SnO powder and a mixture of basic ZnCO(3) and graphite powders. A common stainless steel mesh was used to collect the products. The microstructure and possible growth mechanism of the nc-ZnO/SnO(2) nanowires were investigated. Results showed that tetragonal structured SnO(2) nanowires were obtained, whose surfaces were coated with single-layer ZnO nanocrystals with an average diameter of less than 5 nm. The nanowires had cross-rectangle section with width-to-thickness aspect ratio ranging from 2:1 to 5:1. The lengths of the nanowires were several tens of micrometers. ZnO nanocrystals were single crystalline wurtzite structures, which coated the whole nanowires and distributed uniformly. The possible growth mechanism of the composite nanowires may be enucleated that Zn atoms in the source vapor will replace the Sn atoms on the surface of the formed SnO(2) nanowires due to the higher reducibility of Zn than Sn. Two strong Raman scattering peaks at 626 and 656 cm(-1) appeared in the micro-Raman spectrum of nc-ZnO/SnO(2) nanowires. The origins of the peaks were discussed. Most importantly, the method can be extended to other composite oxide nanowires that are synthesized by oxidizing two kinds of metals, such as high reducibility elements Mg, Al, Zn, and Ti, and low reducibility elements In, Ge, Ga, etc.  相似文献   

4.
The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW's were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.  相似文献   

5.
ZnO nanowires doped with a high concentration Ga, In, and Sn were synthesized via thermal evaporation. The doping content defined as X/(Zn + X) atomic ratio, where X is the doped element, is about 15% for all nanowires. The nanowires consist of single-crystalline wurtzite ZnO crystal, and the average diameter is 80 nm. The growth direction of vertically aligned Ga-doped nanowires is [001], while that of randomly tilted In- and Sn-doped nanowires is [010]. A correlation between the growth direction and the vertical alignment has been suggested. The broaden X-ray diffraction peaks indicate the lattice distortion caused by the doping, and the broadening is most significant in the case of Sn doping. The absorption and photoluminescence of Sn-doped ZnO nanowires shift to the lower energy region than those of In- and Ga-doped nanowires, probably due to the larger charge density of Sn.  相似文献   

6.
Germanium nanowires, ranging from 10 to 150 nm in diameter, were grown several micrometers in length in cyclohexane heated and pressurized above its critical point. Alkanethiol-protected gold nanocrystals, either 2.5 or 6.5 nm in diameter, were used to seed wire formation. Growth proceeded through a solution-liquid-solid mechanism at growth temperatures ranging from 300 to 450 degrees C. At temperatures exceeding 500 degrees C, large Ge particulates formed due to unfavorable growth kinetics. Temperature, the nature of the precursor, precursor concentration, and the Au:Ge ratio were determining factors in nanowire morphology. The Ge nanowires were characterized using a range of techniques, including XPS, XRD, high-resolution TEM and SEM, nanometer-scale EDS mapping, and DTA.  相似文献   

7.
Indium phosphide (InP) nanotubes have been synthesized via the vapor-liquid-solid (VLS) growth mechanism. The nanotubes are crystalline and have the (bulk) zinc blende structure and therefore represent a new class of tube materials. The tubes show photoluminescence, which is considerably blue-shifted with respect to bulk emission, indicating that the optical properties are not dominated by defect states. They are formed at higher temperatures than those at which nanowires are fabricated. A simple model for the formation of the nanotubes is presented. The wall thickness can be controlled by the synthesis temperature and is in the range of 2-20 nm.  相似文献   

8.
Monodispersed and well-aligned samples of TiO(2) nanosquares were synthesized in large quantities in the presence of tetramethylammonium hydroxide (TMAOH) for the first time. These nanosquares were single crystals characterized by slightly truncated shape bounded by {101} facets. XRD, AFM, FT-IR, Raman scattering, TEM and HRTEM were employed to characterize the as-prepared samples. The possible microreaction mechanism was discussed. As a result, TMAOH accelerates the formation of crystalline anatase and plays a structural template role to modify the particle shape to nanosquare. Moreover, TMAOH reacted with hydrolysates and formed layered structural complex compound.  相似文献   

9.
A unified mechanism for the growth of a wide variety of long, uniform, single-crystal nanowires and whiskers, including III-V and II-VI binary, ternary, and quaternary nanowires and whiskers, without the use of any substrate and catalyst has been presented. While elucidating the mechanism, attempts have been made to provide a kinetic and thermodynamic rationale for the growth. Various features of the growth mechanism, including the formation of liquid droplets and seeds, nucleation, and creation of products, have been discussed. Extensive studies of illustrative examples provide the validity of the proposed mechanism. The influence of various parameters such as growth temperature and chamber pressure on the growth mechanism has been studied. The advantages and disadvantages of the proposed mechanism, and its superiority to the well-known vapor-liquid-solid mechanism, have been elucidated. Means to improve the mechanism to obtain self-aligned nanowires and whiskers have been suggested. Based on these, it has been demonstrated that the present mechanism is indeed a powerful self-catalytic growth mechanism uniquely suited to the growth of a wide variety of single-crystal nanowires and whiskers. It can be very useful also for the growth of single-crystal nanotubes.  相似文献   

10.
In this paper, we provide a theoretical basis using thermodynamic stability analysis for explaining the spontaneous nucleation and growth of a high density of 1-D structures of a variety of materials from low-melting metals such as Ga, In, or Sn. The thermodynamic stability analysis provides a theoretical estimate of the extent of supersaturation of solute species in molten metal solvent. Using the extent of maximum supersaturation, the size and density of critical nucleus were estimated and compared with experimental results using nucleation and growth of Ge nanowires using Ga droplets. The consistency of the proposed model is validated with the size and density of the resulting nanowires as a function of the synthesis temperature and droplet size. Both the experimental evidence and the theoretical model predictions point that the diameters of the resulting nanowires decrease with the lowering of synthesis temperatures and that the nucleation density decreases with the size of metal droplet diameter and increasing synthesis temperature.  相似文献   

11.
在1000 ℃用活性炭把二氧化锡粉末还原成单质锡, 锡作为催化剂, 硅片作为硅源同时作为收集衬底, 在硅片上制备出了非晶SiO2纳米灯笼. 灯笼的一端连在硅片上, 另一端为一个锡球, 中间是一些圆弧状的SiO2纳米线把两端相连. 纳米灯笼具有良好的对称性. 利用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED) 和HRTEM自带的能谱分析仪(EDS)对样品的表面形貌、微观结构和成分进行了分析研究. 结果表明, 灯笼中SiO2纳米线为非晶态, 结点是晶态锡, 结点表面覆盖一层非晶态的硅的氧化物. 结合实验条件对纳米灯笼的生长机理进行了讨论, 提出了纳米灯笼生长的一个模型.  相似文献   

12.
We present a mass transport model based on surface diffusion for metal-particle-assisted nanowire growth. The model explains the common observation that for III/V materials thinner nanowires are longer than thicker ones. We have grown GaP nanowires by metal-organic vapor phase epitaxy and compared our model calculations with the experimental nanowire lengths and radii. Moreover, we demonstrate that the Gibbs-Thomson effect can be neglected for III/V nanowires grown at conventional temperatures and pressures.  相似文献   

13.
Controlling the fabrication of the nanowire-nanotube junctions of a dichloro-bridged dimeric iridium complex of 2-phenylpyridine (IPPC) has been achieved by a facile template method. IPPC nanowire-nanotube junctions were prepared at 15 °C, and IPPC nanotubes could be formed by increasing the temperature. It is interesting that IPPC solid nanowires were produced when the temperature decreased to 0 °C. The results show that temperature is a key factor for controlling the process of growth. The emission of the IPPC nanostructures showed a blue shift and a stronger intensity in comparison to IPPC bulk materials.  相似文献   

14.
Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra‐long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X‐ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I–V curve similar to that of black phosphorus and a similar mobility reaching 300 cm2 V?1 s with an Ion/Ioff ratio approaching 102. A significant response to infrared light was observed from the FET device.  相似文献   

15.
潘国卫 《物理化学学报》2006,22(9):1147-1150
在低真空的CVD系统中直接热蒸发SiO粉末并以金为催化剂在硅衬底上制备出大量长达几十微米的硅纳米线(SiNWs), 通过X 射线衍射谱(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、选区电子衍射仪(SAED)和Raman光谱等技术对硅纳米线进行形貌及结构分析. 实验结果表明, 在不同生长温度下制备得到的硅纳米线质量不同, 其中在700 ℃温区生长的硅线质量最好; 与晶体硅Raman的一级散射特征峰(TO)520.3 cm−1相比, 纳米硅线的Raman特征峰(TO)红移至514.8 cm−1.  相似文献   

16.
Ultralong cadmium oxide nanowires were synthesized in high yield on gold-coated silicon substrates by using a vapor transport process. Cadmium vapor generated by the carbothermal reduction of CdO powder in a tube furnace heated to 500 degrees C was carried to the substrate zone by an argon flow with a trace amount of oxygen. The CdO nanowires grew via a vapor-liquid-solid growth mechanism. The diameters of the nanowires are approximately 40-80 nm, and can reach lengths of 30-50 mum. Because the nanowire formation was gold particle catalyzed, patterned nanowire growth on substrates can be achieved. These nanowires grew along the [111] direction and have slightly rough surfaces due to the presence of crystalline CdO shells formed via a physical vapor deposition process. Interesting CdO nanowires with a necklace-like morphology were also observed in a small region of the substrate, where the oxygen supply may be ample to facilitate the lateral growth of rhombohedron-shaped crystals over the straight wires. Electron diffraction and high-resolution TEM results suggest that these side crystals should grow epitaxially on the wire surfaces. The band gap of the CdO nanowires with smoother surfaces was determined to be approximately 2.53 eV. These nanowires exhibit a relatively weak emission band centered at approximately 550 nm.  相似文献   

17.
The vapor-liquid-solid (VLS) process is a fundamental mechanism for the growth of nanowires, in which a small size (5-100 nm in diameter), high melting point metal (such as gold and iron) catalyst particle directs the nanowire's growth direction and defines the diameter of the crystalline nanowire. In this article, we show that the large size (5-50 microm in diameter), low melting point gallium droplets can be used as an effective catalyst for the large-scale growth of highly aligned, closely packed silica nanowire bunches. Unlike any previously observed results using gold or iron as catalyst, the gallium-catalyzed VLS growth exhibits many amazing growth phenomena. The silica nanowires tend to grow batch by batch. For each batch, numerous nanowires simultaneously nucleate, grow at nearly the same rate and direction, and simultaneously stop growing. The force between the batches periodically lifts the gallium catalyst upward, forming two different kinds of products on a silicon wafer and alumina substrate. On the silicon wafer, carrot-shaped tubes whose walls are composed of highly aligned silica nanowires with diameters of 15-30 nm and length of 10-40 microm were obtained. On the alumina substrate, cometlike structures composed of highly oriented silica nanowires with diameters of 50-100 nm and length of 10-50 microm were formed. A growth model was proposed. The experimental results expand the VLS mechanism to a broader range.  相似文献   

18.
Large-area aligned Mo nanowires have been grown on stainless steel substrates by high-temperature chemical vapor deposition with the use of Mo metal. The detailed physical and chemical growth processes regarding the formation of the nanowires have been investigated using mass spectroscopy, thermogravimetry, and differential scanning calorimetry analysis, as well as structure analysis by electron microscopy. In reference to Gibbs energy calculation, our study reveals that the growth relies on the decomposition of MoO2 vapors through condensation of its vapor at high substrate temperatures. The aligned growth is a result of competing growth with the nanowires normal to the substrate surface reaching the final growth front. The field emission measurement and the vacuum luminescent tube study show that the Mo nanowires have potential application as electron emitters.  相似文献   

19.
We introduce a simple method of synthesizing SnO2 nanowire-Bi2Sn2O7 nanoparticle composites based on the principle that SnO2 nanowires can be grown by using Bi as catalysts. A mixture of Bi and Sn powders was thermally evaporated, and the effects of growth temperature on the morphology and structure of the products were investigated. We obtained Bi2Sn2O7-tipped SnO2 nanowires at 700 °C through a vapor–liquid–solid (VLS) process, whereas particle-free SnO2 nanowires were produced at higher temperatures. We have investigated the oxygen sensing properties of the as-synthesized product.  相似文献   

20.
Different ratios and sizes of Ba2F3Cl (BaFxCl2-x, x=1.5) nanorods and nanowires and orthorhombic BaF2 (BaFxCl2-x, x=2) nanorods were prepared by using a liquid-solid-solution approach at 160 approximately 180 degrees C. The processes and results of the experiments conducted to prepare monodisperse Ba2F3Cl nanorods and nanowires showed that the specific surface area increased as the initial concentrations were multiplied. Based on this fact, a mechanism for the nucleation and growth processes of these nanocrystals that have a variety of enlarged sizes was substantiated in view of the surface chemical thermodynamics (SCT). In this SCT mechanism, the specific surface energy takes into account both the surfactant oleic acid and the nanocrystal surface, and is dominated by the chemical potential of the adsorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号