首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Titanium dioxide (TiO2) nanoparticles of both anatase and rutile phases were synthesized by hydrothermal treatment of microemulsions, and their photocatalytic activity for the degradation of X-GL dye was investigated. The only difference between the two methods used was that different acids were added to the microemulsions to make a direct comparison of the photocatalytic activity of the polymorphs possible. UV — Vis reflectance and XRD spectroscopic investigations of these titanium dioxides indicated that a rutile structure could be formed (PR) when hydrochloric acid was used, and anatase formed (PA) when nitric acid was used. The activity of the two polymorphs and P-25 for the photocatalytic degradation of dye in water was also examined. It was found that P-25 consisting of anatase and rutile has the highest activity, and PR consisting of rutile has the lowest. Photodegradation of X-GL in the presence of these different TiO2 particles under air-equilibrated controlled conditions led to the formation of hydrogen peroxide. The formation rate of H2O2 depended on the difference in crystalloid phase. These results indicate that the observed differences in the photocatalytic activity for the three TiO2 photocatalysts are directly related to the formation rate of H2O2.  相似文献   

2.
A visible-light-active nitrogen doped nanocrystalline titanium dioxide (N–TiO2) hydrosol was prepared by precipitation–peptization method and following with hydrothermal crystallization at 110 °C holding for 6 h. XPS results show that nitrogen ions have been doped into the TiO2 lattice successfully and the UV–Vis absorption spectra indicate that the light absorption edge of the N-doped TiO2 has been red-shifted into visible light region. The photocatalytic performance of the N-doped TiO2 thin film prepared from the synthesized hydrosol was evaluated by photodegrading the gaseous formaldehyde (HCHO) under visible light irradiation. The photodegradation ratio of HCHO reached up to 90% within 24 h and the degradation ratio was stable for ten degradation cycles, indicating the prepared hydrosol has good reusable performance in photodegrading gaseous pollutants.  相似文献   

3.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

4.
In order to improve the catalytic activity of Fenton catalyst, a composite catalyst, Fe/TiO2, with both visible-light photocatalytic and Fenton-like catalytic activities was synthesized via a brief solvothermal process. The XRD and SEM results indicated that Fe was dispersed homogeneously on the surface of TiO2 in the form of Fe2O3, and the loading of Fe did not have significant effects on the particle size and morphology of TiO2. The EDS results showed that the loading content of Fe was about 1.4 wt%. The photocatalytic results showed that the prepared Fe/TiO2 composite catalyst had excellent catalytic behaviors for terbuthylazine degradation under visible-irradiation with H2O2 assistance, the degradation ratio reached up to 90% after 120 min. The reinforced degradation performance were primarily attributable to the introduction of carrier TiO2, which expanded visible response range by H2O2 adsorption, and accelerated the cycle of Fe (Ⅱ)/Fe (Ⅲ). The fluorescent spectroscopy results revealed that the degradation process of terbuthylazine involved the generation and participation of active species such as hydroxyl radicals and superoxide radicals. This study is expected to provide a visual approach for designing a novel photo-Fenton catalyst to jointly utilize both photocatalytic and Fenton activities, which can be better applied to the actual use of organics purification in wastewater.  相似文献   

5.
In this study, the photocatalytic degradation of organic reactive dyes have been investigated using MnTiO3/TiO2 heterojunction composites in the presence of electron acceptors under UV‐Visible light irradiation. This MnTiO3/TiO2 heterojunction composites were prepared by annealing different mass ratios of pyrophanite MnTiO3 (3–11 wt%) and TiO2 at 300°C. All the MnTiO3/TiO2 heterojunction composites were characterized by spectral techniques like X‐ray diffraction (XRD), scanning electron microscope (SEM) and diffused reflectance UV‐visible spectroscopic analysis (DRS). Among them, 9 wt% MnTiO3/TiO2 heterojunction composites exhibited higher photocatalytic activity for the degradation of Reactive Blue 4 (RB 4). The photocatalytic efficiency of 9 wt% MnTiO3/TiO2 heterojunction composites was further enhanced by the addition of substantial amount of electron acceptors like hydrogen peroxide (H2O2) and ammonium peroxydisulfate ([NH4]2S2O8). The presence of oxidants (electron acceptors) facilitates the fast degradation of dye solution even in higher concentration upto 200 mg/L. The photocatalytic activity of MnTiO3/TiO2 heterojunction composites was also studied for the degradation of other four different structured reactive dyes. The extent of mineralization of these organic reactive dyes during photocatalytic degradation was estimated from COD analysis. MnTiO3/TiO2 heterojunction composites was also found to have good photostability in the presence of oxidants.  相似文献   

6.
A TiO2-coated Tunisian clay (TiO2–clay) was synthesized by a typical impregnation method. The physicochemical characterization points to a successful impregnation of titania on the clay surface. The activity of this structured catalyst was studied in the photocatalytic/photochemical oxidation of anionic reactive blue 19 (RB 19). The effect of UVA and solar irradiation (UV-solar) was studied at room temperature. TiO2–clay demonstrated an effective degradation of RB 19 under both types of irradiation. Moreover, in this study, the effects of various oxidants such as hydrogen peroxide (H2O2), potassium peroxodisulfate (K2S2O8) and sodium carbonate (Na2CO3) were thoroughly investigated. H2O2 was a promising oxidant for promoting RB 19 degradation under UVA. The kinetics of discoloration of RB 19 followed a pseudo-first-order rate law. We can remark that 20 min of UV irradiation was enough to achieve 100% discoloration of the aqueous solution. However, under UV–Vis, HPLC and chemical oxygen demand measurements indicated, that a longer reaction time (of around 45 min) was required for achieving the complete dye mineralization. The findings clearly demonstrated the applicability of this TiO2/clay catalyst for the photocatalytic oxidation of RB 19.  相似文献   

7.

Carbon doped titanium oxide (CTiO2) photocatalyst was successfully synthesized by the sol–gel method. The crystal structure, surface morphology, and optical properties of CTiO2 have been characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area (SBET), scanning electron microscope, UV–Vis, X-ray spectroscopy (EDS), Fourier transform infrared and X-ray photoelectron spectroscopy. The photocatalytic degradation of acetaminophen (AMP) in aqueous solution, seawater, and polluted seawater has been investigated by using the synthesized photocatalyst under irradiation of UV and natural sunlight. The effectiveness of CTiO2 compared to pure TiO2 toward the photocatalytic removal of AMP was significantly observed. The optimized conditions including catalyst dose, initial concentration of AMP and solution pH were also studied for effective photocatalytic removal. The highest degradation rate was obtained when 2.0 g L?1 of the catalyst was used at pH 7. The kinetic results revealed that the photocatalytic degradation of AMP using CTiO2 obeyed a pseudo-first-order reaction kinetics.

  相似文献   

8.
Indigo carmine in aqueous solution was effectively degraded using ZnO-Bi2O3/Graphitic Carbon Nitride heterojunction structure by visible light/H2O2 system. The mechanism of photocatalytic degradation of Indigo carmine shows the responsible species for the degradation of Indigo carmine in the ZnO-Bi2O3-xC3N4/H2O2/visible light system (x = 0, 1, 2, and 3) is the hydroxyl radicals which were generated from the reaction of e and h+ with H2O2. Under optimal conditions, ZnO-Bi2O3-2C3N4/H2O2/Vis system degraded more than 93% of Indigo carmine in 180 min. Besides, the kinetic of the photocatalytic process was detailed. These results demonstrate that the ZnO-Bi2O3-2C3N4/H2O2/visible light system may become a promising approach to achieve efficient environmental remediation as an environmentally friendly oxidant.  相似文献   

9.
The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV–Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.  相似文献   

10.
The kinetics of photocatalytic oxidation reaction for direct blue solution was studied by using flower-like TiO2 under the irradiation of ultraviolet (UV) light. A series of possible affecting factors were studied, including pH value, the additive amount of light catalyst, H2O2 and with or without Ag modification. The kinetics of photocatalytic degradation under UV was found following a pseudo-second-order reaction kinetic model with high regression coefficients (R 2). It has been demonstrated that the initial concentration and its related factors have influenced the photocatalytic degradation efficiency and corresponding kinetic parameters. Also, the kinetic parameter k is increasing with the degradation efficiency.  相似文献   

11.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

12.
Visible light-responsive TiO2 (Vis-TiO2) thin films were successfully developed by applying a radio-frequency magnetron sputtering deposition method by controlling various sputtering parameters such as the substrate temperature, Ar gas pressure, and the target-to-substrate distance. UV–Vis, XRD and SEM investigations revealed that optical property, the crystal structure, and photocatalytic activity of Vis-TiO2 are strongly affected by the sputtering parameters during the deposition step. Vis-TiO2 was found to act as an efficient photocatalyst for the H2 and O2 evolution from water under visible light irradiation (λ ≥ 420 nm). SIMS investigations have revealed that a slight decrease in the O/Ti ratio of the TiO2 thin films plays an important role in the modification of the electronic properties of Vis-TiO2 thin films, enabling them to absorb visible light.  相似文献   

13.
ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.  相似文献   

14.
Titanium dioxide (TiO2), co-deposited with Fe and N, is first implanted with Fe by a metal plasma ion implantation (MPII) process and then annealed in N2 atmosphere at a temperature regime of 400-600 °C. First-principle calculations show that the (Fe, N) co-deposited TiO2 films produced additional band gap levels at the bottom of the conduction band (CB) and on the top of the valence band (VB). The (Fe, N) co-deposited TiO2 films were effective in both prohibiting electron-hole recombination and generating additional Fe-O and N-Ti-O impurity levels for the TiO2 band gap. The (Fe, N) co-deposited TiO2 has a narrower band gap of 1.97 eV than Fe-implanted TiO2 (3.14 eV) and N-doped TiO2 (2.16 eV). A significant reduction of TiO2 band gap energy from 3.22 to 1.97 eV was achieved, which resulted in the extension of photocatalytic activity of TiO2 from UV to Vis regime. The photocatalytic activity and removal rate were approximately two-fold higher than that of the Fe-implanted TiO2 under visible light irradiation.  相似文献   

15.
Visible-light-driven N-doped TiO2 was prepared by a simple sol–gel process using nitric acid not only as the acid catalyst of the sol–gel reaction but also as the source of nitrogen. The photocatalytic performance of the N-doped TiO2 was investigated by using FTIR spectroscopy to monitor the degradation of trichloroethylene (TCE) during UV and visible irradiation. The photocatalytic degradation of TCE was well-reproduced several times. The activity of Ti–O–N species was supported experimentally. The N-doped TiO2 was found to be responsive to visible light and was stable during repeated runs and maintained the nitrogen species and its activity for at least four months.  相似文献   

16.
采用溶胶凝胶法制备了多壁碳纳米管负载TiO2 (MWCNTs/TiO2),并利用透射电镜、X射线光电子能谱、X射线衍射和紫外-可见漫反射光谱对样品进行了表征。结果表明,MWCNTs/TiO2晶型以锐钛矿为主,MWCNTs的引入会限制TiO2晶粒的生长。另外,MWCNTs/TiO2的光吸收边向长波区域偏移。针对模拟烟气,在固定床光催化反应器中对采用涂覆处理的MWCNTs/TiO2的光催化脱硝性能进行了实验研究。结果表明,NO初始浓度较低时,光催化脱硝效率较高,SO2的存在可抑制光催化脱硝过程,而O2及H2O则有促进作用。在最佳实验条件(73 mg/m3 NO,8% O2,5% H2O)下,光催化脱硝效率可达46%。提出了光催化脱硝反应机理。  相似文献   

17.
The synthesis of Zn‐doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2O2. The catalyst was characterized by transmission electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller, UV–visible reflectance spectra and X‐ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn‐doped TiO2. Zn‐doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2O2 modification further enhanced the photocatalytic activity. Zn doping and H2O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn‐doped TiO2 and H2O2 modified Zn‐doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2O2 modified Zn‐doped TiO2, favoring the adsorption of visible light. Furthermore, Zn‐doped TiO2 modified by H2O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.  相似文献   

18.
This study was focused on the photocatalytic activity of polyaniline (Pani)/iron doped titanium dioxide (Fe–TiO2) composites for the degradation of methylene blue as a model dye. TiO2 nanoparticles were doped with iron ions (Fe) using the wet impregnation method and the doped nanoparticles were further combined with Pani via an in situ polymerization method. For comparison purposes, Pani composites were also synthesized in the presence undoped TiO2. The photocatalyst and the composites were characterized by standard analytical techniques such as FTIR, XRD, SEM, EDX and UV–Vis spectroscopies. Fe–TiO2 and its composites exhibited enhanced photocatalytic activity under ultraviolet light irradiation. Improved photocatalytic activity of Fe–TiO2 was attributed to the dopant Fe ions hindering the recombination of the photoinduced charge carriers. Pani/Fe–TiO2 composite with 30?wt.% of TiO2 nanoparticles achieved 28% dye removal and the discoloration rate of methylene blue for the sample was 0.0025?min?1. FTIR, XRD, SEM, EDX and UV–Vis spectroscopies supported the idea that Fe ions integrated into TiO2 crystal structure and Pani composites were successfully synthesized in the presence of the photocatalyst nanoparticles. The novelty of this study was to investigate the photocatalytic activity of Pani composites, containing iron doped TiO2 and to compare their results with that of Pani/TiO2.  相似文献   

19.
We proposed here a new process coupling dielectric barrier discharge (DBD) plasma with magnetic photocatalytic material nanoparticles for improving yield in DBD degradation of methyl orange (MO). TiO2 doped Fe3O4 (TiO2/Fe3O4) was prepared by the sol-gel method and used as a new type of magnetic photocatalyst in DBD system. It was found that the introduction of TiO2/Fe3O4 in DBD system could effectively make use of the energy generated in DBD process and improve hydroxyl radical contributed by the main surface Fenton reaction, photocatalytic reaction and catalytic decomposition of dissolved ozone. Most part of MO (88%) was degraded during 30 min at peak voltage of 13 kV and TiO2/Fe3O4 load of 100 mg/L, with a rate constant of 0.0731 min?1 and a degradation yield of 7.23 g/(kW h). The coupled system showed higher degradation efficiency for MO removal.  相似文献   

20.
Heterostructures play an important role not only in the manufacture of semiconductor devices, but also in the field of catalysis. Herein, we report the synthesis of PdO/TiO2 and Pd/TiO2 heterostructured nanobelts by means of a simple co‐precipitation method, followed by a reduction process using surface‐modified TiO2 nanobelts as templates. The as‐obtained heterostructures were characterized by transmission electron microscopy, X‐ray photoelectron spectroscopy, and UV/Vis diffuse reflectance spectroscopy. PdO and Pd nanoparticles with a size of about 1.3 and 1.6 nm were assembled uniformly on the surface of TiO2 nanobelts, respectively. Compared with TiO2 nanobelts, PdO/TiO2 and Pd/TiO2 hybrid nanobelts exhibit enhanced photocatalytic activity upon UV and visible‐light irradiation. Photoelectrochemical technology was used to study the heterostructure effect on enhanced photocatalytic activity. Our mechanistic investigation revealed that energy‐band matching is the major factor in the observed enhancement of photocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号