首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fluid Phase Equilibria》2004,216(1):53-57
Vapour–liquid equilibrium compositions were measured for mixtures of δ-tocopherol and carbon dioxide, at pressures from 9 up to 27 MPa, and four temperatures between 306 and 333 K. The system exhibits liquid–liquid equilibrium at high pressures, similarly to previous results for mixtures of α-tocopherol with carbon dioxide. The results were correlated with the Peng–Robinson equation of state, using the Panagiotopoulos–Reid combination rules.Comparison of the solubilities of δ-tocopherol and α-tocopherol in supercritical carbon dioxide was performed using Chrastil’s equation to correlate the data. The number of solvent CO2 molecules per solute molecule was calculated in both cases. An enthalpy of solvation per mole of CO2 of −10 kJ mol−1 was obtained.  相似文献   

2.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

3.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

4.
The fabrication process is described of supported microporous Si3N4 membranes, prepared by pyrolytically decomposing organo-substituted polysilazane precursor. The membrane had a composite asymmetric structure consisting of a mechanically strong porous Si3N4 support which had 42 vol% pores between 0.4 and 0.52 μm, coated with an intermediate and one or two thin active top layers. The individual layers were fabricated by the conventional dip-coating technique.Permeation experiments with He, N2 and CO2 have been performed to determine the gas transport characteristics and separation performance of the processed membranes. The permeation is pressure-independent, indicating no viscous flow in the supported top layer. The proposed process has made it possible to prepare membranes with He permeation rates of ≥5.3×10−6 mol m−2 s−1 Pa−1 and He/N2 permselectivities of ≥2.0, even in the membrane with one top layer. It is also demonstrated from separation experiments, that the membrane with high quality top layer has the separation factors of 4.7 for He/N2 and of the theoretical of Knudsen flow for CO2/N2.  相似文献   

5.
This work presents new experimental results for carbon dioxide (CO2) solubility in aqueous 2-amino-2-methyl-1-propanol (AMP) over the temperature range of (298 to 328) K and CO2 partial pressure of about (0.4 to 1500) kPa. The concentrations of the aqueous AMP lie within the range of (2.2 to 4.9) mol · dm?3. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory has been developed to correlate and predict the (vapour + liquid) equilibrium (VLE) of CO2 in aqueous AMP. The model predictions have been in good agreement with the experimental data of CO2 solubility in aqueous blends of this work as well as those reported in the literature. The current model can also predict speciation, heat of absorption, enthalpy of CO2 loaded aqueous AMP, pH of the loaded solution, and AMP volatility.  相似文献   

6.
The permeability of carbon dioxide (CO2) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF4], [bmim][BF4], [bmim][PF6], [bmim][Tf2N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf2N] membrane. The membrane of [bmim][PF6] presents the lowest permeability.The separation coefficient between CO2 and N2 through the ionic liquid membranes was also investigated at the volume fraction of CO2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF4] and [bmim][BF4] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf2N] membrane which presents the highest permeability of CO2.  相似文献   

7.
《Fluid Phase Equilibria》2006,239(2):172-177
Phase behavior of β-d galactose pentaacetate–carbon dioxide binary system is investigated by dew-point and bubble-point measurements conducted in a high pressure variable volume sapphire cell. The phase envelope for solutions of β-d galactose pentaacetate in supercritical CO2 is obtained for β-d galactose pentaacetate concentrations between 2 and 26 wt%, and for the temperature range of 308–323 K. The system exhibits lower critical solution temperature (LCST) behavior and high solubility of β-d galactose pentaacetate is observed. The densities of the system are also measured, and liquid-like densities (near 1 g/cm3) are observed for single-phase solutions of β-d galactose pentaacetate in supercritical CO2 at concentrations of 18 wt% and higher. Viscosity is measured for solutions of 18 and 25 wt% β-d galactose pentaacetate in the single-phase region at 313 K and 17 MPa and the viscosity values, 0.095 and 0.103 cp, respectively, are similar in magnitude to the viscosity of pure carbon dioxide.  相似文献   

8.
The composite tubular membranes were prepared by applying suspensions of zirconia particles to form separation top-layers on two different porous α-alumina supports and heating the coated supports to partly sinter the particles of top-layers. The conditions of synthesizing the ZrO2/α-Al2O3 membranes were investigated systematically. The mean pore diameter of zirconia membrane was about 0.2 μm by gas bubble pressure method, and the pure water flux was about 400 and 1500 l/(m2 h bar) for ZrO2 membrane on symmetric and asymmetric Al2O3 support, respectively. Zirconia membrane and three different alumina membranes were applied to separate oil–water emulsion obtained from steelworks to evaluate the permeability and separation characteristics, the ZrO2/α-Al2O3 MF membrane in this work was the preferred membrane.  相似文献   

9.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

10.
We describe a new apparatus suitable for measurements of the phase behaviour and phase properties of fluid mixtures under conditions of high-pressure. We propose a synthetic method for the determination of gas solubility, and present results for the system (CO2 + H2O). In addition, we report new measurements of the hydrate equilibrium curves in aqueous systems containing either pure carbon dioxide or mixed gases including CO2. For hydrates formed in the (CO2 + H2O) system, we find an enthalpy of dissociation of 77 kJ · mol?1. This value was unchanged by the addition of mass fraction 0.043 of NaCl to the water. Compared with pure CO2, mixtures of CO2 with air exhibited markedly different dissociation pressures at given temperature, but were characterised by the same enthalpy of dissociation. However, two mixtures containing either nitrogen or methane and hydrogen both exhibited a higher enthalpy of dissociation, 106 kJ · mol?1, consistent with these systems forming structure II hydrates.  相似文献   

11.
Composite hollow fiber membranes were prepared by a dry-jet wet spinning process using a double layer spinneret. These membranes were composed of a thin and dense outer-layer of poly(ethylene oxide)-containing polyimide and a sponge-like inner layer of other polyimide. The outer layer was responsible for the separation and fabricated as thin as 1 μm. The permeation flux of CO2, RCO2, and the CO2/N2 selectivity decreased 40% and 10–20%, respectively, in a month after the membrane preparation. The steady performance was still high; for example, RCO2=69×10−6cm3 (STP)/(cm2 s cm Hg) and the selectivity of 33 at 323 K.  相似文献   

12.
CO2 capture by aqueous alkanolamines treating is one of the prevalent methods to reduce carbon dioxide emissions and to help environmental problems. For realizing more the thermodynamics of the CO2–MDEA–H2O, the PC-SAFT equation of state was used to simulate the absorption of carbon dioxide by MDEA (methyldiethanolamine). A correlation for temperature-dependent binary interaction parameter were calculated by excess enthalpy data for aqueous MDEA at low temperatures (lower than 350 K), and then this binary interaction parameter used to predict phase equilibria of ternary aqueous mixtures of MDEA with carbon dioxide. Smith–Missen algorithm and PC-SAFT EOS have been used to determine concentration of species in chemical equilibrium and physical equilibrium, respectively. In addition, for determining parameter sets of MDEA, vapor pressure and saturated liquid density data were used and different and probable association schemes were considered in parameter estimations. Results show 4(2:2, 0:0) association scheme for MDEA and 4(2:2) association scheme for water have better agreement with binary and ternary VLE experimental data.  相似文献   

13.
In order to study the influence of amine structure on absorption of carbon dioxide, enthalpies of solution of CO2 in 2.50 mol · L?1 aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (THAM), 2-[2-(dimethyl-amino)ethoxy] ethanol (DMAEOE), and 3-dimethyl-amino-1-propanol (DMAP) were measured. The enthalpies of solution are determined as function of gas loading charge (moles of CO2/mole of amine), at temperatures (313.15 and 353.15) K, and pressures range from (0.5 to 2) MPa. Measurements were carried out using a flow calorimetric technique. CO2 solubilities in the aqueous solutions of amine are derived from calorimetric data. Molar volumes of aqueous amine solutions required to handle calorimetric data were determined at 303.15 K using a vibrating tube densimeter. Experimental enthalpies of solution are discussed on the basis of amines alkalinity.  相似文献   

14.
In this paper, a novel Nafion/SiO2 nanocomposite membrane based on the self-assembled Nafion–SiO2 nanoparticles was developed. The average particle size of Nafion–SiO2 nanoparticles prepared by self-assembly process was 2.8 ± 0.5 nm. The self-assembled Nafion–SiO2 nanoparticles significantly enhance the durability of the Nafion/silica nanocomposite membrane as compared to that of conventional Nafion/silica composite and Nafion 212 membranes under wet/dry cyclic tests at 90 °C. With an addition of 5 wt% self-assembled Nafion–SiO2 nanoparticles, the Nafion/SiO2 nanocomposite membrane shows a significantly improved performance stability at cell/humidifying temperatures of 100 °C/60 °C under a current density of 600 mA/cm2, and the degradation rate is 0.12 mV/min, almost 20 times lower than 2.33 mV/min measured on the pristine Nafion 212 membrane under the same conditions. The present results demonstrate the promises of the self-assembled Nafion/SiO2 nanocomposite membrane for elevated-high temperature PEM fuel cells applications.  相似文献   

15.
Catalytic reduction of CO2 (saturated in organic polar solvents, e.g. N,N-dimethylfomamide, containing Me4NX or NaBF4) was achieved at smooth gold electrodes and at glassy carbon electrodes galvanostatically capped with a thin layer of gold. Under these quite explicit conditions, very sharp reduction steps were observed near − 1.5 V vs. Ag/AgCl. With small cations listed above, an unexpected behavior was observed, a progressive electrode inhibition occurring upon several scans or after a fixed-potential electrolysis at E <  1.7 V. This phenomenon could be attributed to the insertion of CO2 into gold, leading to the formation of a thick iono-metallic multi-strata layer (less conducting than pure metal) that grows with the electrode charge. The formation of this new interface is due to the concur of three elements: transient CO2 anion radical, the metal, and rather small-sized cations (M+ = Na+ or TMA+), the three possibly associated in a form {Au-CO2,M+} apparently very reactive with oxygen, moisture, and with some organic π-acceptors. Upon multi-scans up to − 2.2 V, the thickness of formed layer progressively increases reaching more than 10 7 to 10 6 mol cm 2. Such multi-layers undergo decomposition in the anodic domain at about + 1.7 V liberating CO2 beforehand trapped in Au. Coulometric analyses demonstrated that insertion (cathodic) and release (anodic) steps are quite equivalent, which permits to consider this process as chemically reversible sequestration of carbon dioxide.  相似文献   

16.
In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol · m?3 and those of PZ’s were (0.5, 1.0, and 1.5) kmol · m?3. The solubility data (CO2 loading in the amine solution) obtained were correlated as a function of CO2 partial pressure, system temperature, and amine composition via the modified Kent–Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO2 absorption into mixed aqueous solutions of TEA and PZ.  相似文献   

17.
A new gas-diffusion-type biocathode was constructed for carbon dioxide (CO2) reduction. In this work, tungsten-containing formate dehydrogenase (FoDH1), which is a promising enzyme for interconversion of formate and CO2, was used as a catalyst and was absorbed on a Ketjen Black (KB)-modified electrode. We used 1,1′-trimethylene-2,2′-bipyridinium dibromide as a mediator, and the hydrophobicity of the FoDH1-absorbed electrode was optimized according to the weight ratio of the polytetrafluoroethylene binder to KB. We achieved cathodic current densities of about 20 mA cm 2 under mild and quiescent conditions (neutral pH, atmospheric pressure, and room temperature).  相似文献   

18.
19.
New experimental equilibrium data were obtained for the solubility of carbon dioxide in an aqueous solution with 30 wt.% of 2-((2-aminoethyl)amino)ethanol (AEEA) at temperatures ranging from (313.2 to 368.2) K and CO2 partial pressures ranging from above atmospheric to 4400 kPa. A thermodynamic model based on the Deshmukh–Mather method was applied to correlate and predict the CO2 solubility in aqueous AEEA solutions. The binary interaction parameters and equilibrium constants for the proposed reactions were determined by data regression. Using the adjusted parameters, equilibrium partial pressures of CO2 were calculated and compared with the corresponding experimental values at the selected temperatures and pressures. Values of carbon dioxide solubility at other temperatures reported in the literature were also calculated. The average absolute deviation for all of the data points was found to be 8.2%. The enthalpy change of the absorption of CO2 in the 30 wt.% aqueous solution of AEEA was also estimated with our model.  相似文献   

20.
Porous silica–zirconia membranes were fabricated by the sol–gel techniques to study their stability against water and the pervaporation performance of aqueous solutions of organic solvents. Zirconia (10–70 mol%) was added to silica to obtain silica–zirconia composite membranes by firing at 400–500 °C for pervaporation tests with organic solvent/water mixtures, such as iso-propyl alcohol (IPA)/water and tetrahydrofuran (THF)/water mixtures at their normal boiling points.The membrane coatings have been done effectively by the hot-coating methods proposed previously. Boiling water treatments introduced in the coating processes have made the membranes quite stable even in the high water concentration region of aqueous organic solutions at their normal boiling points. Zirconia contents larger than about 40 mol% have made the silica–zirconia membranes quite stable. The membranes of zirconia contents less than about 30 mol% were found not stable in a dilute aqueous solution of IPA. The membranes fabricated by the conventional dip-coating methods with slow drying were not stable against water because of the probable segregation of silica and/or silica-rich phases during drying.The membranes fired at lower temperature (400 °C) gave a higher water flux of around 500 mol m−2 h−1 (9 kg m−2 h−1) with a separation factor larger than 1500 at 10 wt.% of water in the boiling feed of IPA/water mixture, for example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号