首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 160 毫秒
1.
鉴于现有文献中关于面状特征迹线转动角的计算公式(简称pp公式)与实验测量结果相差较大,笔者模拟薄晶体样品位向调整时的双倾操作过程,推导出计算面状特征迹线方向随样品倾转而变化的新公式。通过与实验测量值及pp公式计算结果相比较,证实本公式给出的计算值与实验结果相符,并再次反映出pp公式的不适用性。  相似文献   

2.
在~(13)C 90.1和62.9MHz观察频率下测定了吗啡(morphine)分子在溶液中的核弛豫参数。用分子不对称旋转模型算得吗啡分子绕X轴的旋转速度为8.6×10~9周秒~(-1),绕Y轴的旋转速度为6.1×10~9周秒~(-1)。NCH_3中甲基的内旋转速度为5.7×10~9周秒~(-1),内旋转位垒为4.59 kcal mol~(-1)。  相似文献   

3.
在~(13)C 90.1和62.9MHz观察频率下测定了吗啡(morphine)分子在溶液中的核弛豫参数。用分子不对称旋转模型算得吗啡分子绕X轴的旋转速度为8.6×10~9周秒~(-1),绕Y轴的旋转速度为6.1×10~9周秒~(-1)。NCH_3中甲基的内旋转速度为5.7×10~9周秒~(-1),内旋转位垒为4.59 kcal mol~(-1)。  相似文献   

4.
以柱状微相分离结构的聚乙烯基环己烷-聚乙烯-聚乙烯基环己烷(PVCH-PE-PVCH)三嵌段共聚物为研究对象,分别采用压延法和旋转涂膜法制得取向样品。利用偏振红外光谱法测定了PE柱状微区内结晶区中—CH2—基团的面内扭摆振动吸收峰的变化,以此来考察PE晶区折叠链片晶的链轴在柱状微相分离结构中的取向性。结果表明:在压延取向的样品中,由于外力的作用使得PE柱状微区沿着样品流动的方向取向,PE片晶的链轴也同样倾向于沿着平行于PE柱状微区的柱轴方向排列。退火使得PE片晶沿着链轴取向方向的取向程度升高。在由旋转涂膜制得的取向薄膜样品中,PE柱状微区垂直于基板排列,而PE片晶链轴则更倾向于沿着垂直于PE柱状微区的柱轴方向取向。  相似文献   

5.
HZSM-5分子筛焙烧脱铝的27Al MQMAS NMR研究   总被引:1,自引:0,他引:1  
用29Si、27Al魔角旋转固体核磁共振(MAS NMR)结合二维多量子魔角旋转(2D MQMAS)技术对焙烧脱铝的HZSM-5分子筛中铝的配位状态进行了研究.结果表明,HZSM-5分子筛经焙烧后,在化学位移(δ)45处出现一宽峰信号,其主要来自扭曲四配位铝.通过二维三量子铝谱计算出扭曲四配位铝的四极作用常数约为5.2 MHz.对700和750 ℃焙烧样品的铝谱进行分峰拟合,发现在δ 30处又出现一个小峰,归属为非骨架五配位铝.同时,在750 ℃焙烧样品的二维多量子铝谱中直接观察到非骨架五配位铝的信号.焙烧温度低于700 ℃,脱铝不明显;高于700 ℃,引起分子筛骨架的显著脱铝.焙烧还造成部分骨架铝的信号变得“不可观测”.  相似文献   

6.
基于密度泛函理论(DFT)中的B3LYP方法, 在6-311++G(d,p)水平上全优化得到了3,3'-偶氮苯磺酸(3,3'-AbS)在S0和T1态顺反异构化机理.在S0态存在两种异构化途径: 绕角NNC反转和绕NC键旋转相结合的形式和单纯的绕CNNC二面角旋转形式, 两种异构化途径的能垒分别为94.2和124.3 kJ·mol-1. 有必要指出的是, 在反转与旋转结合的途径上存在二次过渡态. 在T1态上仅存在旋转途径且其能垒为21.1 kJ·mol-1. 采用含时密度泛函理论(TD-DFT), 在B3LYP/6-311++G(d,p)水平上, 沿着基态的两种异构化途径计算得到了T1, S1, T2和S2态的垂直激发的势能剖面, 分析了可能的光致异构化途径. 当激发光波长为330 nm时, 反应物分子被激发到S2态, 然后弛豫到较低的能态S1发生异构化反应, 旋转途径存在两条活化途径: (1) 沿着S1/S0的圆锥交叉点衰变到产物; (2) 由S1态弛豫到T1态后, 在S0-T1-S0的区域发生异构化, 再转化到产物. 计算结果表明, 3,3'-AbS通过反转和旋转的结合形式实现在S0态的异构化, 而被激发后倾向于沿着旋转坐标作为其主要的异构化途径.  相似文献   

7.
合成了直链醚 氨基酸型的二甘醇醛缩双精氨酸Schiff碱 (H2 DAAR)与镧配合物和四甘醇醛缩双赖氨酸Schiff碱 (H2 TALY)与钇配合物 ,经元素分析确定其组成分别为 :La(H2 DAAR) (NO3 ) 3 ·6H2 O和Y(H2 TALY) (NO3 ) 3 ·5H2 O .采用交叉极化结合魔角旋转技术 (CPMAS)及消除旋转边带技术 (TOSS) ,获得高分辨固体 (HRSS) 13 CNMR谱 ,并与液体 2D1H 13 CNMRCOSY谱作了比较 ,得到相互支持的结果 ;而且在固体高分辨13 CNMR波谱中发现\/ C ——N—的13 C谱峰分裂和烯烃上13 C峰等新信息 .  相似文献   

8.
以竖直旋转的细铜针为接收器,聚乙烯基吡咯烷酮(PVP)/无水乙醇质量分数为10%,电压25 kV,在不同的旋转速度下纺出了PVP螺旋纤维绳.当竖直细铜针固定不转时,纺丝纤维呈松散线状结构;竖直细铜针旋转速度加快,纤维形态由松散的螺旋缠绕向紧密缠绕的趋势变化,PVP纤维在纺丝针头和接收铜丝间静电库仑引力(垂直方向),纺出纤维间的库仑斥力(水平方向),以及铜针高速旋转力(切线方向)的三重作用下,最终制得PVP螺旋微米纤维绳.用扫描电子显微镜(SEM)对其进行表征.实验结果表明,接收器旋转速度和接收距离对多螺旋结构纤维的形貌有显著影响.讨论了螺旋纤维的形成机理.  相似文献   

9.
吴秉亮 《电化学》2013,(1):79-82
本文讨论了电化学交流阻抗图中图形旋转的物理意义.电化学体系等效电路中的电容基本上属复数电容,由此推导出在这个假设下的阻抗极坐标公式,及其参数的数学表达式.实际上此表达式与很多电化学体系的实际阻抗谱相符,如:实际测量的理想极化电极的阻抗图并不是平行于虚轴的一条直线,而是其与实轴的交点顺时钟旋转了α角的直线,这时,即双层电容的耗散角;与RC并联电路有关的半圆阻抗图几乎都有同一方向的α角旋转,其值等于相关电容的耗散角.若明确了旋转的物理意义,由电化学阻抗谱拟合得到的参数均可表征体系的性质,这对于寻求某些特殊性能的电池体系将是有用的.  相似文献   

10.
通过精细调整控制合成条件, 在SiO2-TPAOH-H2O-NH4F (TPAOH: 四丙基氢氧化铵)体系中制备出了厚度可控的薄板型Silicalite-1 分子筛材料, 并利用扫描电镜(SEM)、高分辨透射电镜(HRTEM)、粉末X射线衍射(XRD)及差热-热重分析(TG-DTA)对样品的结构信息、样品形貌及物理化学性质进行了表征. 研究表明, NH4F浓度和反应体系pH 值对Silicalite-1 分子筛的形貌起着重要的导向作用. 随着NH4F/SiO2的摩尔比(n(NH4F)/n(SiO2))由0 增加到0.18, 分子筛形貌由交互生长的椭圆形变为板形, 其厚度也逐渐变薄; 当n(NH4F)/n(SiO2)=0.4 时, 厚度达到最薄. 继续增加NH4F/SiO2的摩尔比, 其厚度增加, 这是由于F-提高了样品结晶度. HRTEM研究表明b轴垂直于平面, 由于在MFI 结构的材料中, b轴方向是其直孔道方向, 这种材料有利于客体分子的进出. 还研究了样品的热稳性, 所有样品在1100℃焙烧2 h后, 其形貌和结构不发生变化.  相似文献   

11.
The origin of spontaneous polarization in the ferroelectric smectic C* phase is investigated within a mean-field microscopic model which describes the coupling between the tilt of molecules from the normal to the smectic layers and the rotation of a molecule around its long axis. The mean-field potential is studied which takes into account a chiral polar and a non-chiral quadrupolar biasing of the rotation of molecules around the molecular long axes. Each molecule is characterized by three transverse molecular axes: the chiral axis which turns parallel to the macroscopic C2 axis at small tilts, the polar axis in the direction of the transverse dipole moment and the quadrupolar axis which tends to be parallel to the C2 axis at very large tilts. A numerical analysis of the model shows that there are four different types of spontaneous polarization dependent on the temperature, including the sign-reversal type. The influence of three microscopic parameters, i.e. two angles between the three characteristic axes and the relative strength of the chiral versus the non-chiral biasing, on the type of spontaneous polarization is investigated. The relationship between the microscopic and the equivalent Landau model is established and discussed.  相似文献   

12.
Summary In this work we study surface fitting equations for a rigid rotor model of aminomethanol. The energies were obtained from the GAUSSIAN88 package using 3-21G bases and fitted on a least square equation, thus generating a Fourier series expansion of the energy as a function of two dihedral angles. The dihedral angles chosen are those that represent rotation around the C-O and N-C axes in the first case, and rotation around C-O and inversion around the amino group in the second case. Results indicate that the hydroxyl hydrogen is subject to almost free rotation around the C-O axis. Further fully relaxed 6-31G* calculations were performed in order to qualify the results obtained for the rigid rotor model.  相似文献   

13.
Piezoelectric nanoactuators, which can provide extremely stable and reproducible positioning, are rapidly becoming the dominant means for position control in transmission electron microscopy. Here we present a second-generation miniature goniometric nanomanipulation system, which is fully piezo-actuated with ultrafine step size for translation and rotation, programmable, and can be fitted inside a hollowed standard specimen holder for a transmission electron microscope (TEM). The movement range of this miniaturized drive is composed of seven degrees of freedom: three fine translational movements (X, Y, and Z axes), three coarse translational movements along all three axes, and one rotational movement around the X-axis with an integrated angular sensor providing absolute rotation feedback. The new piezoelectric system independently operates as a goniometer inside the TEM goniometer. In situ experiments, such as tomographic tilt without missing wedge and differential tilt between two specimens, are demonstrated.  相似文献   

14.
A broad temperature antiferroelectric binary mixture has been investigated by means of dielectric spectroscopy. The sample was cooled down to –70°C. It was found that the sample was still in antiferroelectric phase. This is the widest antiferroelectric mixture ever seen (~170°) in which three well-separated modes have been detected at room temperature. In addition, the bias field influence on existing modes has been observed. All modes change their strengths with bias field. Results show that the fastest mode, called X mode previously, gradually disappears around –30°C. When the temperature decreases below –40°C, one can indisputably observe additional mode, faster than X mode. This mode (named as Y mode) observed for extra low temperatures is bias independent. It can be the molecular mode, connected with rotation around long molecular axis. The rotation around short molecular axis seems to be blocked in antiferroelectric packing. To calculate parameters of observed modes, Cole–Cole model was used. The parameters of Y mode are discussed in this article.  相似文献   

15.
We have developed a set of restraint potentials for β‐hairpin tilt relative to the membrane normal, β‐hairpin rotation around the β‐hairpin axis, and hairpin–hairpin distance. Such restraint potentials enable us to characterize the molecular basis of specific β‐hairpin tilt and rotation in membranes and hairpin–hairpin interactions at the atomic level by sampling their conformational space along these degrees of freedom, i.e., reaction coordinates, during molecular dynamics simulations. We illustrate the efficacy of the β‐hairpin restraint potentials by calculating the potentials of mean force (PMFs) as a function of tilt and rotation angles of protegrin‐1 (PG‐1), a β‐hairpin antimicrobial peptide, in an implicit membrane model. The peptide association in the membrane is also examined by calculating the PMFs as a function of distance between two PG‐1 peptides in various dimer interfaces. These novel restraint potentials are found to perform well in each of these cases and are expected to be a useful means to study the microscopic driving forces of insertion, tilting, and rotation of β‐hairpin peptides in membranes as well as their association in aqueous solvent or membrane environments particularly when combined with explicit solvent models. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

16.
Membrane protein orientation has traditionally been determined by NMR using mechanically or magnetically aligned samples. Here we show a new NMR approach that abolishes the need for preparing macroscopically aligned membranes. When the protein undergoes fast uniaxial rotation around the bilayer normal, the 0 degrees -frequency of the motionally averaged powder spectrum is identical to the frequency of the aligned protein whose alignment axis is along the magnetic field. Thus, one can use unoriented membranes to determine the orientation of the protein relative to the bilayer normal. We demonstrate this approach on the M2 transmembrane peptide (M2TMP) of influenza A virus, which is known to assemble into a proton-conducting tetrameric helical bundle. The fast uniaxial rotational diffusion of the M2TMP helical bundle around the membrane normal is characterized via 2H quadrupolar couplings, C-H and N-H dipolar couplings, 13C chemical shift anisotropies, and 1H T1rho relaxation times. We then show that 15N chemical shift anisotropy and N-H dipolar coupling measured on these powder samples can be analyzed to yield precise tilt angles and rotation angles of the helices. The data show that the tilt angle of the M2TMP helices depends on the membrane thickness to reduce the hydrophobic mismatch. Moreover, the orientation of a longer M2 peptide containing both the transmembrane domain and cytoplasmic residues is similar to the orientation of the transmembrane domain alone, suggesting that the transmembrane domain regulates the orientation of this protein and that structural information obtained from M2TMP may be extrapolated to the longer peptide. This powder-NMR approach for orientation determination is generally applicable and can be extended to larger membrane proteins.  相似文献   

17.
Raman scattering activities were derived for uniaxially oriented molecules. The unique axis of the molecules is assumed to rotate around one of the axes of space-fixed coordinate in a fixed orientation angle with respect to the axis, while the other two principal axes of the molecules are randomly oriented. Expressions for Raman scattering activities in terms of the elements of derived polarizability tensor are given as the function of orientation angle and are tabulated for various symmetries of point groups.  相似文献   

18.
A wide-line NMR study of chain segmental motion in nylon 66 has been made on a rolled sheet having “double orientation.” In this sheet the crystallite c axis, i.e., the molecular chain axis, is oriented preferentially along the roll direction, and the crystallographic (010) plane lies predominantly parallel to the roll plane, or the plane of the sheet. The direction of the applied magnetic field with respect to the sheet is characterized by two angles, the polar angle γ subtended by the roll direction and the magnetic field, and an azimuthal angle ?. NMR spectra were taken at various values of the angles γ and ? and at three temperatures ?196°C, 20°C, and 180°C. The second moments of the absorption spectra taken at 180°C were compared with theoretical predictions of second moments based on two models for the high-temperature segmental motion (called the αc process) in crystalline regions of nylon 66. One model consists of rotational oscillation with amplitudes δ of segments around their axies. The second model is denoted 60° flip-flop motion and consists of rotational 60°C jumps of the segments around their axes between two equilibrium sites with the possibility that the segments also oscillate with a general amplitudes δ around each site. The experimental results are consistent with fairly large amplitudes δ, in which case both models approach the limiting case of full segment rotation. For this reason the experiments do not allow a distinction between the two models. From the second moments at ?196°C and 20°C the decrease in second moment due to the low temperature segmental motion, the γ process, is obtained. This motion occurs in noncrystalline regions of nylon 66 and is found to cause a decrease in second moment which is strongly dependent on the two angles γ and ?, implying double orientation of the noncrystalline segments. It is suggested that at low temperatures the noncrystalline segments become immobilized in sites dictated by the crystallite orientation through the extensive hydrogen bonding known to exist in nylon 66.  相似文献   

19.
Protegrin‐1 (PG‐1) belongs to the family of antimicrobial peptides. It interacts specifically with the membrane of a pathogen and kills the pathogen by releasing its cellular contents. To fully understand the energetics governing the orientation of PG‐1 in different membrane environments and its effects on the physicochemical properties of the peptide and membrane bilayers, we have performed the potential of mean force (PMF) calculations as a function of its tilt angle at four distinct rotation angles in explicit membranes composed of either DLPC (1,2‐dilauroylphosphatidylcholine) or POPC (1‐palmitoyl‐2‐oleoylphosphatidylcholine) lipid molecules. The resulting PMFs in explicit lipid bilayers were then used to search for the optimal hydrophobic thickness of the EEF1/IMM1 implicit membrane model in which a two‐dimensional PMF in the tilt and rotation space was calculated. The PMFs in explicit membrane systems clearly reveal that the energetically favorable tilt angle is affected by both the membrane hydrophobic thickness and the PG‐1 rotation angle. Local thinning of the membrane around PG‐1 is observed upon PG‐1 tilting. The thinning is caused by both hydrophobic mismatch and arginine‐lipid head group interactions. The two‐dimensional PMF in the implicit membrane is in good accordance with those from the explicit membrane simulations. The ensemble‐averaged Val16 15N and 13CO chemical shifts weighted by the two‐dimensional PMF agree fairly well with the experimental values, suggesting the importance of peptide dynamics in calculating such ensemble properties for direct comparison with experimental observables. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号