首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
During the reduction of NO2 by C3H6 in O2 over alumina-supported Au, Rh and Pt it was found that three parallel reactions take place,i.e., reduction of NO2 to N2 and N2O, partial decomposition of NO2 to NO and oxidation of C3H6 to CO and CO2. In the absence of C3H6, the NO2→NO+O2 reaction reaches a fast equilibrium on Rh and Pt but not on Au and γ-Al2O3. Addition of C3H6 to the NO2+O2 mixture leads to the formation of NO above equilibrium conversion levels.  相似文献   

2.
Flow reactor experiments were performed over wide ranges of pressure (0.5–14.0 atm) and temperature (750–1100 K) to study H2/O2 and CO/H2O/O2 kinetics in the presence of trace quantities of NO and NO2. The promoting and inhibiting effects of NO reported previously at near atmospheric pressures extend throughout the range of pressures explored in the present study. At conditions where the recombination reaction H + O2 (+M) = HO2 (+M) is favored over the competing branching reaction, low concentrations of NO promote H2 and CO oxidation by converting HO2 to OH. In high concentrations, NO can also inhibit oxidative processes by catalyzing the recombination of radicals. The experimental data show that the overall effects of NO addition on fuel consumption and conversion of NO to NO2 depend strongly on pressure and stoichiometry. The addition of NO2 was also found to promote H2 and CO oxidation but only at conditions where the reacting mixture first promoted the conversion of NO2 to NO. Experimentally measured profiles of H2, CO, CO2, NO, NO2, O2, H2O, and temperature were used to constrain the development of a detailed kinetic mechanism consistent with the previously studied H2/O2, CO/H2O/O2, H2/NO2, and CO/H2O/N2O systems. Model predictions generated using the reaction mechanism presented here are in good agreement with the experimental data over the entire range of conditions explored. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 705–724, 1999  相似文献   

3.
Nitrite has recently been recognized as a storage form of NO in blood and as playing a key role in hypoxic vasodilation. The nitrite ion is readily reduced to NO by hemoglobin in red blood cells, which, as it happens, also presents a conundrum. Given NO’s enormous affinity for ferrous heme, a key question concerns how it escapes capture by hemoglobin as it diffuses out of the red cells and to the endothelium, where vasodilation takes place. Dinitrogen trioxide (N2O3) has been proposed as a vehicle that transports NO to the endothelium, where it dissociates to NO and NO2. Although N2O3 formation might be readily explained by the reaction Hb‐Fe3++NO2?+NO?Hb‐Fe2++N2O3, the exact manner in which methemoglobin (Hb‐Fe3+), nitrite and NO interact with one another is unclear. Both an “Hb‐Fe3+‐NO2?+NO” pathway and an “Hb‐Fe3+‐NO+NO2?” pathway have been proposed. Neither pathway has been established experimentally. Nor has there been any attempt until now to theoretically model N2O3 formation, the so‐called nitrite anhydrase reaction. Both pathways have been examined here in a detailed density functional theory (DFT, B3LYP/TZP) study and both have been found to be feasible based on energetics criteria. Modeling the “Hb‐Fe3+‐NO2?+NO” pathway proved complex. Not only are multiple linkage‐isomeric (N‐ and O‐coordinated) structures conceivable for methemoglobin–nitrite, multiple isomeric forms are also possible for N2O3 (the lowest‐energy state has an N? N‐bonded nitronitrosyl structure, O2N? NO). We considered multiple spin states of methemoglobin–nitrite as well as ferromagnetic and antiferromagnetic coupling of the Fe3+ and NO spins. Together, the isomerism and spin variables result in a diabolically complex combinatorial space of reaction pathways. Fortunately, transition states could be successfully calculated for the vast majority of these reaction channels, both MS=0 and MS=1. For a six‐coordinate Fe3+O‐nitrito starting geometry, which is plausible for methemoglobin–nitrite, we found that N2O3 formation entails barriers of about 17–20 kcal mol?1, which is reasonable for a physiologically relevant reaction. For the “Hb‐Fe3+‐NO+NO2?” pathway, which was also found to be energetically reasonable, our calculations indicate a two‐step mechanism. The first step involves transfer of an electron from NO2? to the Fe3+–heme–NO center ({FeNO}6) , resulting in formation of nitrogen dioxide and an Fe2+–heme–NO center ({FeNO}7). Subsequent formation of N2O3 entails a barrier of only 8.1 kcal mol?1. From an energetics point of view, the nitrite anhydrase reaction thus is a reasonable proposition. Although it is tempting to interpret our results as favoring the “{FeNO}6+NO2?” pathway over the “Fe3+‐nitrite+NO” pathway, both pathways should be considered energetically reasonable for a biological reaction and it seems inadvisable to favor a unique reaction channel based solely on quantum chemical modeling.  相似文献   

4.
The selective catalytic reduction (SCR) of NO by propane in excess oxygen-containing gas mixture was studied on Co/Al2O3 catalyst. The oxygen concentration is very important for the reaction. The NO conversion to N2 without oxygen is 3% at 800 K and when the O2 concentration is raised up to 8% the NO conversion reaches its maximum value of 60% at 800 K. Characterization results by TPR and UV-Vis spectroscopy show that in the catalyst, species strongly interacting with tetrahedral and octahedral Co2+ ions in the support are present. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.  相似文献   

6.
NO oxidation was investigated over Pt-Sn/g-Al2O3. The addition of Sn to 1%Pt/g-Al2O3 enhances NO oxidation to NO2. This effect is related to the enhancement of chemisorbed oxygen on the metallic surface produced by Sn.  相似文献   

7.
The oxidation kinetics of NO by O2 in aqueous solution was observed using a stopped flow apparatus. The kinetics follows a third order rate law of the form k · [NO]2 · [O2] in analogy to gas-phase results. The rate constant at 296 K was measured as (6.4 ± 0.8) · 106 M?2 s?1 with an activation energy of 2.3 kcal/mol and a preexponential factor of (4.0 ± 0.5) · 108 M?2 s?1. The rate constant displays a very slight pH dependence corresponding to less than a factor of three over the range 0 to 12. The system NO/O2 in aqueous solution is an efficient nitrosating agent which has been tested using phenol as a substrate over the pH range 0 to 12. The rate limiting step leading to formation of 4-nitrosophenol is the formation of the reactive intermediate whose competitive hydrolysis yields HONO or NO2?. The absence of NO3? in the autoxidation of NO, the exclusive presence of NO2? as a product of the nitrosation reaction of phenol, and the kinetic results of the N3? trapping experiments point towards N2O3 as the reactive intermediate. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Black phosphorus (BP), a star‐shaped two‐dimensional material, has attracted considerable attention owing to its unique chemical and physical properties. BP shows great potential in photocatalysis area because of its excellent optical properties; however, its applications in this field have been limited to date. Now, a Z‐scheme heterojunction of 2D/2D BP/monolayer Bi2WO6 (MBWO) is fabricated by a simple and effective method. The BP/MBWO heterojunction exhibits enhanced photocatalytic performance in photocatalytic water splitting to produce H2 and NO removal to purify air; the highest H2 evolution rate of BP/MBWO is 21042 μmol g?1, is 9.15 times that of pristine MBWO and the NO removal ratio was as high as 67 %. A Z‐scheme photocatalytic mechanism is proposed based on monitoring of .O2?, .OH, NO2, and NO3? species in the reaction. This work broadens applications of BP and highlights its promise in the treatment of environmental pollution and renewable energy issues.  相似文献   

9.

Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2 ̄, NO3 ̄, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2 ̄ and nitrates NO3 ̄ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.

  相似文献   

10.
The cooperation of Zn and Co in the Zn-Co/HZSM-5 catalyst was investigated. NO was selectively reduced by CH4 to N2 in the presence of excess O2, and the catalytic activity depended on both the activation of CH4 and the adsorption properties of NOx. It was found that the addition of Zn could effectually heighten the selectivity of methane to NOx. The results of H2-TPR, NH3-TPD and XPS proved that addition of Zn into Co/HZSM-5 could inhibit the formation of bulk Co3O4 on the outer surface of the catalyst. Reducing the bulk Co3O4 would restrain the combustion of methane and improve the selectivity of methane to NOx, which was very consistent with the experimental results. MS-TPD results showed that Zn contributed the form of NO2 and strengthened its adsorption on the Co/HZSM-5 catalyst. So the reaction mechanism is proposed to occur via two successive elementary steps. First NO is oxidized to NO2 on the dispersed CoOx sites or Co2+ active sites; then NO2 is adsorbed on Zn2+ sites, and further reacts with methane on proton acid sites. The key step is the adsorption of NO2. Zn directly participates in the reaction by adsorption of NO2.  相似文献   

11.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

12.
Vibrational chemiluminescence in the Δν1 = Δν3 = ?1 band of NO2 is observed both in the O + NO and O3 + NO reactions and shown to be emitted by molecules with up to 11 000 cm?1 of vibrational energy. Quenching rate constants of NO23 are estimated ranging from about 6 × 10?14 for Ar to about 3 × 10?12 cm3 s?1 for NO2. The ratio of vibrational to electronic emission is 0.06 ± 0.03 for O + NO and 5.3 ± 1.0 for O3 + NO. It is suggested that vibrationally excited NO2 is a major product of that channel of the O3 + NO reaction which forms ground-state NO2(2A1) directly.  相似文献   

13.
高硅 Na-ZSM-5 分子筛表面 NO 的常温吸附-氧化机理   总被引:1,自引:0,他引:1  
刘华彦  张泽凯  徐媛媛  陈银飞  李希 《催化学报》2010,31(10):1233-1241
 采用程序升温表面反应 (TPSR) 和原位漫反射红外光谱 (DRIFTS) 等手段研究了常温下 NO 和 O2 在高硅 Na-ZSM-5 分子筛上吸附-氧化反应机理. 结果表明, Na-ZSM-5 分子筛上 NO 的催化氧化过程中伴随着显著的 NO2 物理吸附, 表现为 NO 氧化和 NO2 吸附间的动态平衡. Na-ZSM-5 分子筛表面 NOx 吸附物种的 TPSR 和原位 DRIFTS 表征表明, 化学吸附的 NO 和气相中的 O2  在 Na-ZSM-5 表面反应生成吸附态的 NO3, 并继续与 NO 作用生成弱吸附的 NO2  和 N2 O4, 它们吸附饱和后释放出来; 其中, 强吸附的 NO3 在 NO 氧化过程中起到了反应中间体的作用, 同时也促进了 NO 的吸附.  相似文献   

14.
Pulsed microwave discharges operated at atmospheric pressure in gas mixtures containing N2, O2, and NO are investigated experimentally and theoretically for various gas mixture constituents and operating conditions with respect to the ability of exhaust gas purification. The rotational gas temperature and the vibrational temperature of N2 are derived from CARS measurements. The composition of the exhaust gas after treatment is monitored using FTIR spectroscopy. The processes of the chemical, electronic, and vibrational kinetics are described by a model that has been developed to calculate the species densities. The results obtained show that in N2/NO gas mixtures an overall reduction of NOx takes place. In the case of N2/O2/NO gas mixtures, no net reduction of NOx is achieved for a pulsed microwave power below 3600 W, a pulse length of 50 s, and a typical repetition frequency of 2 kHz.  相似文献   

15.
New experimental results were obtained for the mutual sensitization of the oxidation of NO and methane in a fused silica jet‐stirred reactor operating at 105 Pa, over the temperature range 800–1150 K. The effect of the addition of sulfur dioxide was studied. Probe sampling followed by online FTIR analyses and off‐line GC‐TCD/FID analyses allowed the measurement of concentration profiles for the reactants, stable intermediates, and final products. A detailed chemical kinetic modeling of the present experiments was performed. An overall reasonable agreement between the present data and modeling was obtained. According to the present modeling, the mutual sensitization of the oxidation of methane and NO proceeds via the NO to NO2 conversion by HO2 and CH3O2. The conversion of NO to NO2 by CH3O2 is more important at low temperatures (800 K) than at higher temperatures (850–900 K) where the production of NO2 is mostly due to the reaction of NO with HO2. The NO to NO2 conversion is favored by the production of the HO2 and CH3O2 radicals yielded from the oxidation of the fuel. The production of OH resulting from the oxidation of NO accelerates the oxidation of the fuel: NO + HO2 → OH+ NO2 followed by OH + CH4→ CH3. In the lower temperature range of this study, the reaction further proceeds via CH3 + O2→ CH3O2; CH3O2+ NO → CH3O + NO2. At higher temperatures, the production of CH3O involves NO2: CH3+ NO2→ CH3O. This sequence of reactions is followed by CH3O → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2 → CH2O + H; CH2O +OH → HCO; HCO + O2 → HO2 and H + O2 → HO2. The data and the modeling show that unexpectedly, SO2 has no measurable effect on the kinetics of the mutual sensitization of the oxidation of NO and methane in the present conditions, whereas it frequently acts as an inhibitor in combustion. This result was rationalized via a detailed kinetic analysis indicating that the inhibiting effect of SO2 via the sequence of reactions SO2+H → HOSO, HOSO+O2 → SO2+HO2, equivalent to H+O2?HO2, is balanced by the reaction promoting step NO+HO2 → NO2+OH. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 406–413, 2005  相似文献   

16.
An infrared spectroscopic study of the diatomic molecules O2, N2, NO and H2 adsorbed under different conditions on Fe2O3 has been performed.Complex patterns of absorption on both α-Fe2O3 and γ-Fe2O3 activated in O2 at high temperature are assigned to vibrations of two different chemisorbed O2 species.N2 molecules do not interact with “oxygen rich” α-Fe2O3 surfaces, but give N2O? and N2O22? species when chemisorbed on evacuated surfaces.NO molecules give complex patterns of absorption, depending on the gas pressure. Three different types of nitrate structures can be identified, as well as NO, NO? and cis-N2O2 chemisorbed species. Chemisorbed water molecules are formed by contact of H2 with Fe2O3 surfaces even at room temperature.  相似文献   

17.
李明时 《中国化学》2007,25(4):435-438
Reduction of NO2 with CO in the presence of NO and excess oxygen, a model mixture for flue gas, over a 0.1% Pt/SiO2 catalyst was studied. The related reaction mechanisms, such as oxidation of CO and NO, were discussed. It was found that there was a narrow temperature window (180-190 ℃) for the reduction of NO2 by CO. When the temperature was lower than the lower limit of the window, the reduction hardly occurred, while when the temperature was higher than the upper limit of the window, the direct oxidation of CO by O2 occurred and thereby NO2 could not be effectively reduced by CO. The presence of NO shifted the window to higher temperatures owing to the inhibition effect of NO on the activation of O2 on Pt, which made it possible to reduce NO2 by CO in flue gas.  相似文献   

18.
Flow reactor experiments were performed to study moist CO oxidation in the presence of trace quantities of NO (0–400 ppm) and SO2 (0–1300 ppm) at pressures and temperatures ranging from 0.5–10.0 atm and 950–1040 K, respectively. Reaction profile measurements of CO, CO2, O2, NO, NO2, SO2, and temperature were used to further develop and validate a detailed chemical kinetic reaction mechanism in a manner consistent with previous studies of the CO/H2/O2/NOX and CO/H2O/N2O systems. In particular, the experimental data indicate that the spin‐forbidden dissociation‐recombination reaction between SO2 and O‐atoms is in the fall‐off regime at pressures above 1 atm. The inclusion of a pressure‐dependent rate constant for this reaction, using a high‐pressure limit determined from modeling the consumption of SO2 in a N2O/SO2/N2 mixture at 10.0 atm and 1000 K, brings model predictions into much better agreement with experimentally measured CO profiles over the entire pressure range. Kinetic coupling of NOX and SOX chemistry via the radical pool significantly reduces the ability of SO2 to inhibit oxidative processes. Measurements of SO2 indicate fractional conversions of SO2 to SO3 on the order of a few percent, in good agreement with previous measurements at atmospheric pressure. Modeling results suggest that, at low pressures, SO3 formation occurs primarily through SO2 + O(+M) = SO3(+M), but at higher pressures where the fractional conversion of NO to NO2 increases, SO3 formation via SO2 + NO2 = SO3 + NO becomes important. For the conditions explored in this study, the primary consumption pathways for SO3 appear to be SO3 + HO2 = HOSO2 + O2 and SO3 + H = SO2 + OH. Further study of these reactions would increase the confidence with which model predictions of SO3 can be viewed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 317–339, 2000  相似文献   

19.
N2O5 is an important intermediate in the atmospheric nitrogen cycle. Using a flow tube reactor, N2O5 was found to be released from the TiO2 surface during the photocatalytic oxidation of NO2, revealing a previously unreported source of N2O5. The rate of N2O5 release from TiO2 was dependent on the initial NO2 concentration, relative humidity, O2/N2 ratio, and irradiation intensity. Experimental evidence and quantum chemical calculations showed that NO2 can react with the surface hydroxyl groups and the generated electron holes on the TiO2, followed by combining with another NO2 molecule to form N2O5. The latter was physisorbed on TiO2 and had a low adsorption energy of −0.13 eV. Box model simulations indicated that the new source of N2O5 released from TiO2 can increase the daytime N2O5 concentration by up to 20 % in urban areas if abundant TiO2-containing materials and high NOx concentrations were present. This joint experimental/theoretical study not only demonstrates a new chemical mechanism for N2O5 formation but also has important implications for air quality in urban areas.  相似文献   

20.
A fluorescence excitation spectrum of (CH3)2CHO (isopropoxy radical) is reported following photolysis of isopropyl nitrite at 355 nm. Rate constants for the reaction of isopropoxy with NO, NO2, and O2 have been measured as a function of pressure (1–50 Torr) and temperature (25–110°C) by monitoring isopropoxy radical concentrations using laser-induced fluorescence. We have obtained the following Arrhenius expressions for the reaction of isopropoxy with NO and O2 respectively: (1.22±0.28)×10?11 exp[(+0.62±0.14 kcal)/RT]cm2/s and (1.51±0.70)×10?14 exp[(?0.39±0.28)kcal/RT]cm3/s where the uncertainties represent 2σ. The results with NO2 are more complex, but indicate that reaction with NO2 proceeds more rapidly than with NO contrary to previous reports. The pressure dependence of the thermal decomposition of the isopropoxy radical was studied at 104 and 133°C over a 300 Torr range using nitrogen as a buffer gas. The reaction is in the fall-off region over the entire range. Upper limits for the reaction of isopropoxy with acetaldehyde, isobutane, ethylene, and trimethyl ethylene are reported.We have performed the first LIF study of the isopropoxy radical. Arrhenius parameters were measured for the reaction of i-PrO with O2, NO, NO2, using direct radical measurement techniques. All reactions are in their high-pressure limits at a few Torr of pressure. The rate constant for the reactions of i-PrO with NO and NO2 reactions exhibit a small negative activation energy. Studies of the i-PrO + NO2 reaction produce data which indicate that O(3P) reacts rapidly with i-PrO. Unimolecular decomposition studies of i-PrO indicate that the reaction is in the fall-off region between 1 and 300 Torr of N2 and the high-pressure limit is above 1 atmosphere of N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号