首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple, rapid and a highly selective method for direct electrochemical determination of acebutolol hydrochloride (AC) was developed. The developed method was based on the construction of three types of sensors conventional polymer (I), carbon paste (II) and modified carbon nanotubes (MCNTs) carbon paste (III). The fabricated sensors depend mainly on the incorporation of acebutolol hydrochloride with phosphotungstic acid (PTA) forming ion exchange acebutolol‐phosphotungstate (AC‐PT). The performance characteristics of the proposed sensors were studied. The sensors exhibited Nernstian responses (55.6 ± 0.5, 57.14 ± 0.2 and 58.6 ± 0.4 mV mol L?1) at 25 °C over drug concentration ranges (1.0 × 10?6‐1.0 × 10?2, 1.0 × 10?7‐1.0 × 10?2 and 5.0 × 10?8‐1.0 × 10?2 mol L?1 with lower detection limits of (5.0 × 10?7, 5.0 × 10?8 and 2.5 × 10?8 mol L?1 for sensors (I), (II) and (III), respectively. The influence of common and possible interfering species, pharmaceutical additives and some related pharmacological action drugs was investigated using separate solution method and no interference was found. The stability indicating using forced degradation of acebutolol hydrochloride was studied. The standard addition method was used for determination of the investigated drug in its pharmaceutical dosage forms and biological fluids. The results were validated and statistically analysed and compared with those from previously reported methods.  相似文献   

2.
《Electroanalysis》2017,29(12):2793-2802
In this work, SiO2/Nb2O5/ZnO prepared by the sol‐gel processing method was used as substrate base for immobilization of the protoporphyrin‐IX ion. Iron(III) ion was inserted into the porphyrin ring (SiNbZn‐PPFe). A simple square wave voltammetry method based on a composite sensor carbon paste electrode of this material,designed as EPC‐SiNbZn‐PPFe, was developed and validated successfully for the determination of L‐tryptophan (Trp). The optimum conditions were obtained by using sensor modified with 18.00 mg SiNbZn‐PPFe material, 12.00 mg graphite powder and 6.0 μL mineral oil and phosphate buffer 0.3 mol L−1 pH 7.0. The sensitivity of the sensor was found to be 0.523 AL mol −1, linear range from 10 to 70 μmol L−1 and limit of detection of 3.28 μmol L−1. Therefore, the developed method was successfully applied for the Trp determination in real samples of pharmaceutical formulation and can be used for routine quality control pharmaceutical formulations containing Trp.  相似文献   

3.
This work describes the preparation of graphene oxide by the Modified Hummers Method and the chemical modification of its surface with nanoparticles of copper pentacyanonitrosylferrate(III) (GOCuNP). The materials obtained were characterized by Raman spectroscopy, x‐ray photoelectron spectroscopy and transmission electron microscopy. The GOCuNP was characterized by cyclic voltammetry using a graphite paste electrode that presented electrocatalytic response for N‐acetylcysteine with detection limit of 2.97×10?5 mol L?1 at concentration range of 3.00×10?5 to 6.00×10?3 mol L?1 of N‐acetylcysteine. By this way, the bimetallic complex formed is included in the list of materials obtained as potential candidates for the construction of electrochemical sensors for N‐acetylcysteine detection.  相似文献   

4.
《Electroanalysis》2005,17(8):685-693
Carbon paste electrodes were modified by mixing appropriate amounts of the monomers o‐phenylendiamine, p‐phenylendiamine and m‐phenylendiamine (o‐PD, p‐PD and m‐PD) into a graphite powder‐paraffin oil matrix. The electropolymerization of the incorporated phenylendiamine was then carried out in a carbon paste electrode in acidic medium by cyclic voltammetry between ?0.30 V and +0.90 or under constant potential. The modified carbon paste electrodes (MCPEs) obtained by this electropolymerization method were found to be useful for trace determination of Pb2+ in aqueous solutions. Lead(II) was first preconcentrated on the modified electrodes by complexation with the modifier, and the electrode was then transferred to an electrochemical cell. The best results in terms of sensitivity and detection limit were obtained with poly p‐phenylenediamine (poly (p‐PD)). For a 10‐min preconcentration time, the calibration plot was linear from 5×10?8 mol L?1 to 10?5 mol L?1, with r2=0.999 and relative standard deviation equal to 5%. However, the lowest lead concentration that could be detected was 10?9 mol L?1. Interference from metal ions like Cd(II), Hg(II), Zn(II), Fe(II) and Cu(II) was also studied.  相似文献   

5.
In this work, low‐cost and environmentally friendly natural zeolite exchanged with Mn2+ cations was used for the first time to modify the glassy carbon electrode with the aim to obtain a fast and simple sensor for voltammetric determination of paracetamol (PAR). The Mn‐zeolite/graphite modified glassy carbon electrode (MnZG?GCE) was prepared by evaporation of solvent from dispersion of the zeolite/graphite mixture with the polymer in acetone. The electrochemical characteristics of MnZG?GCE were conducted by electrochemical impedance spectroscopy and cyclic voltammetry. Compared with graphite modified GCE (G?GCE), MnZG?GCE exhibited better electrochemical parameters, which confirms the superiority of applying zeolite in the proposed sensor. The optimization of the pH‐value of supporting electrolyte and instrumental parameters were carried out. The peak current was proportional to the concentration of PAR in a phosphate buffer saline of pH 6.0 in the range from 0.029 to 0.69 mg L?1 (R=0.9997) with limit of detection of 8.8 μg L?1. Finally, the proposed electrode was successfully applied to determine the paracetamol in pharmaceutical formulation and certified reference materials. The satisfactory recoveries, which ranged from 89.2 to 102.7 %, were obtained for all studied samples. It confirmed the attractiveness of relatively inexpensive, easy to fabricate and non‐toxic MnZG?GCE in determination of PAR in complicated matrixes.  相似文献   

6.
Novel electrochemical sensors based on carbon paste impregnated with metallopthalocyanine (MPc, M=Co, Fe) complexes, have been constructed for the assay of anti‐HIV drug 2′,3′‐dideoxyinosine (didanosine, DDI). Both modified electrodes showed electrocatalytic activity towards the oxidation of dideoxyinosine in phosphate buffer pH 7.4 with a working concentration range of 10?6–10?4 mol/L and a detection limit of 10?7 mol/L magnitude order. The sensor proved to be highly reliable for the assay of the purity of DDI ‐ raw material as well as for the uniformity content test of Videx tablets.  相似文献   

7.
A new analytical methodology for the electrochemical detection of the herbicide maleic hydrazide (3,6‐dihydroxypyridazine) by flow injection analysis is presented. This method is supported by the novel application of a palladium‐dispersed carbon paste electrode as an amperometric sensor for this herbicide. Maleic hydrazide shows anodic electrochemical activity on carbon‐based electrodes (glassy carbon or carbon paste electrodes) in all the pH range. This electrochemical activity is enhanced using metal‐dispersed carbon paste electrodes, especially at Pd‐dispersed CPE which displays good oxidation signals at 690 mV (0.050 M phosphate buffer pH 7.0), 140 mV lower than at unmodified electrodes. Under the optimized conditions, the electroanalytical performance of Pd‐dispersed CPE in flow injection analysis was excellent, with good reproducibility (RSD 3.3%) and a wide linear range (1.9×10?7 to 1.0×10?4 mol L?1). A detection limit of 1.4×10?8 mol L?1 (0.14 ng maleic hydrazide) was obtained for a sample loop of 100 μL at a fixed potential of 700 mV in 0.050 M phosphate buffer solution at pH 7.0 and a flow rate of 2.0 mL min?1. The proposed method was applied for the maleic hydrazide detection in natural drinking water samples.  相似文献   

8.
Three novel poly vinyl chloride (PVC) ( A ), carbon paste (CP) ( B ), and coated glassy carbon‐MWCNT (CGC) ( C ) salicylate (sal?) sensors based on new synthesized [Co(L2Cl)Cl3(H2O)] ? H2O complex (L2Cl=(1H‐benzimidazol‐2‐ylmethyl)‐N‐(2‐chloro‐phenyl)‐ amine)), o‐nitrophenyloctyl ether as a mediator and tridodecylmethylammonium chloride as a cationic additive were successfully used for determination of sal? in human plasma and pharmaceutical formulations. The sal?‐sensors exhibited enhanced sensitivity with slope of ?63.5, ?60.5 and ?58.9 mV/decade and detection limit of 1.0×10?5, 4.0×10?7, and 1.0×10?6 mol L?1 for A – C sensors respectively. Quantum chemical calculations were carried out by HF and DFT/B3LYP methods to explore and investigate the interaction between the receptor and the different anions. The intermolecular H‐bond created between the uncoordinated C?O of salicylate group and the secondary amino group in the complex is the key factor of the selectivity of the proposed sensor. A linear relation is established between the natural charge on the Co center and the value of the binding energy, where the decrease in positive charge is associated by an increase in the anion binding energy.  相似文献   

9.
A novel electrochemically treated ZrOCl2 doped carbon paste composite electrode was easily prepared by directly incorporating ZrOCl2 into graphite powder after with an electrochemical treatment for the first time. This sensor showed sensitive voltammetric sensing for daidzein. The surface morphology and electrochemical properties of the electrode were investigated by scanning electron microscopy and cyclic voltammetry. The electrochemical behavior of daidzein was investigated in detail. Under the optimized conditions, the response currents were linearly related to daidzein concentrations in the range of 3×10?8 to 2×10?6 mol L?1 with a detection limit of 1×10?8 mol L?1 in phosphate buffer solution with pH 2.5. The proposed sensor was also applied to the determination of daidzein in pueraria, pharmaceutical preparations and human uric sample with satisfactory results.  相似文献   

10.
Silicon dioxide nanoparticles modified carbon paste electrode was fabricated and used for electrochemical investigation of tryptophan. Compared with the unmodified electrode, the peak current significantly increased. Experimental conditions for tryptophan determination were optimized. Linear relationship between the peak current and tryptophan concentration was obtained in the range of 1.0 × 10?7?5.0 × 10?6 mol L?1 and 5.0 × 10?6?5.0 × 10?5 mol L?1 with an estimated detection limit of 3.6 × 10?8 mol L?1 (S/N = 3). Tryptophan in pharmaceutical and human serum samples were successfully determined by the proposed method.  相似文献   

11.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

12.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

13.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

14.
The electrochemical behavior of oxadiargyl at a graphene‐paste electrode modified with an azo dye, 2‐(4‐((4‐acetylphenyl)diazenyl)phenylamino)ethanol (ADPE), ADPE/MGRPE was investigated. The modified electrode showed high electrocatalytic activity toward oxadiargyl. The apparent electron transfer rate constant (ks) and charge transfer coefficient (α) between electrode and ADPE were 1.16 s?1 and 0.41, respectively. The differential pulse voltammetry response of the modified graphene‐paste electrode was linear against the concentration of oxadiargyl in the range from 0.03 to 1.4 mg L?1. The limit of detection was found to be 1.3 µg L?1 (S/N=3). The practical analytical utility of this electrode was demonstrated by measurement of oxadiargyl in river water, soil and rice samples.  相似文献   

15.
A new chemically modified carbon paste electrode based on a mixture of two ion‐exchangers namely chlorpheniramine‐silicotungstate (CPM‐ST) and chlorpheniramine‐tetraphenylborate (CPM‐TPB) as ion‐exchange site for determination of chlorpheniramine maleate (CPM) was described. The best performance was exhibited by the electrode having the paste containing 3.0 wt% ion‐exchangers (CPM‐ST&CPM‐TPB), 48.5 wt% graphite, 47.5 wt% DOPh and 1.0 wt% NaTPB. The proposed chemically modified carbon paste electrode exhibited a Nernstian response for CPM over a wide concentration range of 1.2×10?6 to 1.0×10?2 M with a detection limit of 5.1×10?7 M between pH 4.5 and 7.7 with fast response ≤10 s. The sensor showed good selectivity for CPM with respect to a large number of inorganic cations, organic cations, sugars, amino acids and some common drug excipients. The modified electrode was applied to potentiometric determination of CPM in its pharmaceutical preparations and biological fluids (serum and urine) with average recoveries of 97.5–102% and relative standard deviations of 0.32–1.97%.  相似文献   

16.
《Electroanalysis》2017,29(11):2491-2497
New aspects related to electrochemical performance of modified carbon paste electrodes (CPE) of high analytical performance are presented in this work. We studied whether the functionalisation of graphite powder with oxygenated functional groups (graphite oxide, GrO) could affect the electrochemical features of a classical CPE. By introducing oxygen termination over the graphite surface, a remarkable improvement in electrochemical performance was verified, including enhancement of analytical signals and charge transfer kinetics, as demonstrated from electrochemical characterisation assays conducted by cyclic voltammetry and electrochemical impedance spectroscopy towards the potassium hexa‐cyanoferrate (II/III) probe. In addition, a positive effect was noted from the anchoring of Au nanoparticles on GrOPE. In analytical terms, two biologically relevant molecules were simultaneously determined using the proposed modified electrode based on GrO and AuNPs: epinephrine (EP) and uric acid (UA). Using differential pulse voltammetry (DPV), wide linear concentration ranges were founded for the analytical curves of EP and UA, and the limits of detection of 1.0×10−7 mol L−1 (EP) and 5.0×10−8 mol L−1 (UA) were predicted, respectively. The designed electrochemical sensor showed excellent precision of measurement and appropriate applicability for the analysis of biological fluids.  相似文献   

17.
18.
A modified carbon paste electrode was prepared by incorporating the TiO2 nanoparticles in the carbon paste matrix. The electrochemical behavior of gallic acid (GA) is investigated on the surface of the electrode using cyclic voltammetry and differential pulse voltammetry. The surface morphology of the prepared electrode was characterized using the scanning electron microscopy. The results indicate that the electrochemical response of GA is improved significantly at the modified electrode compared with the unmodified electrode. Furthermore, the capabilities of electron transfer on these two electrodes were also investigated by electrochemical impedance spectroscopy. Under the optimized condition, a linear dynamic range of 2.5?×?10?6 to 1.5?×?10?4?mol?L?1 with detection limit of 9.4?×?10?7?mol?L?1 for GA is obtained in buffered solutions with pH 1.7. Finally, the proposed modified electrode was successfully used in real sample analysis.  相似文献   

19.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

20.
《Analytical letters》2012,45(10):1853-1863
Abstract

NiO nanoparticles (NiO NPs) were prepared with chemical precipitation method and modified on the surface of vaseline‐impregnated graphite electrode with chitosan. It was found that, based on the catalysis of the NiO NPs for the chemiluminescent reaction of the ECL process, the enhancing effect of isoniazid on the weak electrogenerated chemiluminescence (ECL) signal of luminol at a NiO NPs‐chitosan modified electrode was stronger than that at a bare graphite electrode. Under the optimum experimental conditions, the relative ECL intensity was linear with isoniazid concentration over the range 3.0×10?10~1.0×10?6 g/ml at the NiO NPs‐chitosan modified electrode with a detection limit of 1.0×10?10 g/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号