首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A portable sample preparation device with a magnetic polymer monolith as the extraction medium was constructed. The monolith was synthesized by polymerizing methacrylic acid and ethylene dimethacrylate around a cylindrical magnet. In this way, the monolith with a magnetic core could be readily attached to the extraction device by magnetism. The constructed device was evaluated for the enrichment of UV filters in water samples, followed by high‐performance liquid chromatographic analysis. The extraction efficiency for the targets was satisfactory with no matrix interference. Good linearities were obtained for the UV filters with the correlation coefficients >0.9986. The limits of detection and quantification for the UV filters were 0.3–0.8 and 1.0–2.4 ng/mL, respectively. The recoveries of the UV filters from the spiked water samples at the concentration of 100 ng/mL were 95.3–101.7%, with relative standard deviations <10%. Accordingly, the proposed portable device was demonstrated to be suitable for on‐site simultaneous sampling, purification, and preconcentration within a single step.  相似文献   

2.
UV filters, contained in sunscreens and other cosmetic products, as well as in some plastics and industrial products, are nowadays considered contaminants of emerging concern because their widespread and increasing use has lead to their presence in the environment. Furthermore, some UV filters are suspected to have endocrine disruption activity. In the present work, we developed an analytical method based on liquid chromatography with tandem mass spectrometry for the determination of UV filters in tap and lake waters. Sixteen UV filters were extracted from water samples by solid‐phase extraction employing graphitized carbon black as adsorbent material. Handling 200 mL of water sample, satisfactory recoveries were obtained for almost all the analytes. The limits of detection and quantification of the method were comparable to those reported in other works, and ranged between 0.7–3.5 and 1.9–11.8 ng/L, respectively; however in our case the number of investigated compounds was larger. The major encountered problem in method development was to identify the background contamination sources and reduce their contribution. UV filters were not detected in tap water samples, whereas the analyses conducted on samples collected from three different lakes showed that the swimming areas are most subject to UV filter contamination.  相似文献   

3.
Simultaneous derivatization and air‐assisted liquid–liquid microextraction using an organic that is solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p‐xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90–2.7 and 3.0–6.1 ng/mL, respectively. The enrichment and enhancement factors were in the ranges of 370–430 and 489–660, respectively. The method precision, expressed as the relative standard deviation, was within the range of 4–6% (= 6) and 4–9% (= 4) for intra‐ and interday precisions, respectively. The proposed method was successfully used for the determination of methyl‐, ethyl‐, and propyl parabens in cosmetic, hygiene and food samples, and personal care products.  相似文献   

4.
A simple, fast, and sensitive analytical protocol using fabric‐phase sorptive extraction followed by high performance liquid chromatography with ultraviolet detection has been developed and validated for the extraction of five parabens including methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. In the present work, sol‐gel polyethylene glycol coated fabric‐phase sorptive extraction membrane is used for the preconcentration of parabens (polar) from complex matrices. The use of fabric‐phase sorptive extraction membrane provides a high surface area which offers high sorbent loading, shortened equilibrium time, and overall decrease in the sample preparation time. Various factors affecting the performance of fabric‐phase sorptive extraction, including extraction time, eluting solvent, elution time, and pH of the sample matrix, were optimized. Separation was performed using a mobile phase consisting of water:acetonitrile (63:37; v/v) at an isocratic elution mode at a flow rate of 0.9 mL/min with wavelength at 254 nm. The calibration curves of the target analytes were prepared with good correlation coefficient values (r2 > 0.9955). The limit of detection values range from 0.252 to 0.580 ng/mL. Finally, the method was successfully applied to various cosmetics and personal care product samples such as rose water, deodorant, hair serum, and cream with extraction recoveries ranged between 88 and 122% with relative standard deviation <5%.  相似文献   

5.
Although there is increasing concern about residues from personal care products entering the aquatic environment and their potential to accumulate to levels that pose a health threat to humans and wildlife, we still know little about the extent and magnitude of their presence in the aquatic environment. In this study we describe a procedure for isolation, and subsequent determination, of compounds commonly added to personal care products. The compounds of interest include UV filters with the commercial name Eusolex (homosalate, 4-methylbenzylidenecamphor, benzophenone-3, octocrylene, butylmethoxydibenzoylmethane, ethylhexyl methoxycinnamate) and two common anti-microbial agents, clorophene and triclosan. Water samples were filtered, acidified, and extracted by use of solid-phase extraction. Extracted compounds were then derivatised before analysis by gas chromatography–mass spectroscopy. By use of our method we obtained limits of detection of 13–266 ng L−1 for UV filters, and 10–186 ng L−1 for triclosan and clorophene. Recoveries were 82–98% for deionised water and 50–98% for natural water (seawater, pool water, lake water, and river water). Samples collected in Slovenia included seventeen recreational waters (seawater, pool water, lake water, and river water; August 2004) and four wastewaters (January 2005). The most abundant UV filter was benzophenone-3 (11–400 ng L−1). Of the two anti-microbial agents studied, trace amounts, only, of triclosan were present in the river Kolpa (68 ng L−1) and in an hospital effluent (122 ng L−1).  相似文献   

6.
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid–liquid microextraction based on the solidification of floating organic drops and determined by high‐performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket–Burman design and Box–Behnken design. The optimized values were: 58 μL of 1‐decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high‐performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0–1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2–0.4 and 0.1–0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples.  相似文献   

7.
In this work, a novel, rapid, and simple analytical method was proposed for the detection of parabens in milk sample by gas chromatography coupled with mass spectrometry. At the same time, milk sample was pretreated by magnetic solid phase extraction, which detected up to five parabens. A series of important parameters of magnetic solid phase extraction were investigated and optimized, such as pH value of loading buffer, amount of material, adsorption time, ionic strength, eluting solvents, and eluting time. Under the optimized conditions, the corresponding values were more than 0.9991, limits of detection and the limit of quantification were 0.1 and 0.5 ng/mL, respectively. In addition, the recoveries were achieved in range of 95–105%, the liner range were within 0.1–600 ng/mL, and the relative standard deviations were even lower than 5%.  相似文献   

8.
We describe the determination of trace amounts of chlorinated parabens, i.e. disinfection by-products, in swimming pool water, using gas chromatography-mass spectrometry with selected ion monitoring (GC-MS-SIM). A dichlorinated by-product of isopropylparaben was detected at levels of up to 25 ng L?1. Further, a dichlorinated by-product of methylparaben and a monochlorinated by-product of benzylparaben were present in concentrations lower than the limit of quantification. Benzylparaben, the parent compound, was also detected at concentrations of up to 28 ng L?1. Thus, in this study, chlorinated parabens were detected and quantified for the first time as disinfection by-products in swimming pool water. The results of this study have raised concerns regarding the chlorinated by-products of active ingredients used in personal care products.  相似文献   

9.
A solid‐phase extraction combined with a liquid chromatography‐tandem mass spectrometry analysis has been developed and validated for the simultaneous determination of 44 pharmaceuticals belonging to different therapeutic classes (i.e., antibiotics, anti‐inflammatories, cardiovascular agents, hormones, neuroleptics, and anxiolytics) in water samples. The sample preparation was optimized by studying target compounds retrieval after the following processes: i) water filtration, ii) solid phase extraction using Waters Oasis HLB cartridges at various pH, and iii) several evaporation techniques. The method was then validated by the analysis of spiked estuarine waters and wastewaters before and after treatment. Analytical performances were evaluated in terms of linearity, accuracy, precision, detection, and quantification limits. Recoveries of the pharmaceuticals were acceptable, instrumental detection limits varied between 0.001 and 25 pg injected and method quantification limits ranged from 0.01 to 30.3 ng/L. The precision of the method, calculated as relative standard deviation, ranged from 0.3 to 49.4%. This procedure has been successfully applied to the determination of the target analytes in estuarine waters and wastewaters. Eight of these 44 pharmaceuticals were detected in estuarine water, while 26 of them were detected in wastewater effluent. As expected, the highest values of occurrence and concentration were found in wastewater influent.  相似文献   

10.
A simple HPLC‐UV method was developed and validated for the quantification of pterostilbene (3,5‐dimethoxy‐4'‐hydroxy‐trans‐stilbene), a pharmacologically active phytoalexin in rat plasma. The assay was carried out by measuring the UV absorbance at 320 nm. Pterostilbene and the internal standard, 3,5,4'‐trimethoxy‐trans‐stilbene eluted at 5.7 and 9.2 min, respectively. The calibration curve (20–2000 ng/mL) was linear (R2 > 0.997). The lower limits of detection and of quantification were 6.7 and 20 ng/mL, respectively. The intra‐ and inter‐day precisions in terms of RSD were all lower than 6%. The analytical recovery ranged from 95.5 ± 3.7 to 103.2 ± 0.7% while the absolute recovery ranged from 101.9 ± 1.1 to 104.9 ± 4.4%. This simple HPLC method was subsequently applied in a pharmacokinetic study carried out in Sprague–Dawley rats. The terminal elimination half‐life and clearance of pterostilbene were 96.6 ± 23.7 min and 37.0 ± 2.5 mL/min/kg, respectively, while its absolute oral bioavailability was 12.5 ± 4.7%. Pterostilbene appeared to have better pharmacokinetic characteristics than its natural occurring analog, resveratrol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

12.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

13.
A method for the identification and quantification of bisphenol A and 12 bisphenol analogues in river water and sediment samples combining liquid–liquid extraction, precolumn derivatization, and ultra high‐performance liquid chromatography coupled with tandem mass spectrometry was developed and validated. Analytes were extracted from the river water sample using a liquid–liquid extraction method. Dansyl chloride was selected as a derivatization reagent. Derivatization reaction conditions affecting production of the dansyl derivatives were tested and optimized. All the derivatized target compounds were well separated and eluted in 10 min. Dansyl chloride labeled compounds were analyzed using a high‐resolution mass spectrometer with electrospray ionization in the positive mode, and the results were confirmed and quantified in the parallel reaction monitoring mode. The method validation results showed a satisfactory level of sensitivity. Linearity was assessed using matrix‐matched standard calibration, and good correlation coefficients were obtained. The limits of quantification for the analytes ranged from 0.005 to 0.02 ng/mL in river water and from 0.15 to 0.80 ng/g in sediment. Good reproducibility of the method in terms of intra‐ and interday precision was achieved, yielding relative standard deviations of less than 10.1 and 11.6%, respectively. Finally, this method was successfully applied to the analysis of real samples.  相似文献   

14.
This work describes an effective, low solvent consumption and affordable sample preparation approach for the determination of eight UV filters in surface and wastewater samples. It involves sorptive extraction of target analytes in a disposable, technical grade silicone disc (5 mm diameter × 0.6 mm thickness) followed by organic solvent desorption, large volume injection (LVI), and gas chromatography-mass spectrometry determination. Final working conditions involved overnight extraction of 100-mL samples, containing 10% of methanol, followed by analytes desorption with 0.2 mL of ethyl acetate. The method provides linear responses between the limits of quantification (from 0.003 to 0.040 ng mL−1) and 10 ng mL−1, an intra-day precision below 13%, and low matrix effects for surface, swimming pool, and treated sewage water samples. Moreover, the extraction yields provided by silicone discs were in excellent agreement with those achieved using polydimethylsiloxane-covered stir bars. Several UV filters were found in surface and sewage water samples, with the maximum concentrations corresponding to octocrylene.  相似文献   

15.
Sun protection is an important part of our lives. UV filters are widely used to absorb solar radiation in sunscreens. However, excess UV filters constitute persistent groups of organic micropollutants present in the environment. An environmentally friendly ionic‐liquid‐based up‐and‐down shaker‐assisted dispersive liquid?liquid microextraction device combined with ultra‐performance liquid chromatography coupled with photodiode‐array detection has been developed to preconcentrate three UV filters (benzophenone, 2‐hydroxy‐4‐methoxybenzophenone, 2,2′‐dihydroxy‐4‐methoxybenzophenone) from field water samples. In this method, the optimal conditions for the proposed extraction method were: 40 μL [C8MIM][PF6] as extraction solvent and 200 μL methanol as disperser solvent were used to extract the UV filters. After up‐and‐down shaking for 3 min, the aqueous solution was centrifuged at 5000 rpm speed, then using microtube to collect the settled extraction solvent and using ultra‐performance liquid chromatography for further analysis. Quantification results indicated that the linear range was 2–1000 ng/mL. The LOD of this method was in the range 0.2–1.3 ng/mL with r2 ≥ 0.9993. The relative recovery in studies of different types of field water samples was in the range 92–120%, and the RSD was 2.3–7.1%. The proposed method was also applied to the analysis of field samples.  相似文献   

16.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

17.
A new, simple, and rapid syringe‐to‐syringe dispersive liquid‐phase microextraction with solidified floating organic drop was used for the separation and preconcentration of ochratoxin A from grain and juice samples before its quantification using high‐performance liquid chromatography and fluorescence detection. Factors influencing the microextraction efficiency of ochratoxin A, such as sample solution pH, type and volume of organic extractant, salt concentration, number of injections, and volume of the sample, were studied and optimized. Under the optimum properties, the calibration graph showed linearity in the range of 65.0–700.0 ng/L (coefficient of determination = 0.9991). The limit of detection was 20.0 ng/L. The inter‐day and intra‐day relative standard deviations were in the range of 5.0–8.5%. This method was successfully applied for the quantification of ochratoxin A in grain and juice samples.  相似文献   

18.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

19.
In the present study, dispersive liquid-liquid microextraction (DLLME) using an ionic liquid (IL) as the extractant was successfully developed to extract four benzophenone-type UV filters from the different water matrices. Orthogonal array experimental design (OAD), based on five factors and four levels (L(16)(4(5))), was employed to optimize IL-dispersive liquid-liquid microextraction procedure. The five factors included pH of sample solution, the volume of IL and methanol addition, extraction time and the amount of salt added. The optimal extraction condition was as follows. Sample solution was at a pH of 2.63 in the presence of 60 mg/mL sodium chloride; 30 μL IL and 15 μL methanol were used as extractant and disperser solvent, respectively; extraction was achieved by vortexing for 4 min. Using high-performance liquid chromatography-UV analysis, the limits of detection of the target analytes ranged between 1.9 and 6.4 ng/mL. The linear ranges were between 10 or 20 ng/mL and 1000 ng/mL. This procedure afforded a convenient, fast and cost-saving operation with high extraction efficiency for the model analytes. Spiked waters from two rivers and one lake were examined by the developed method. For the swimming pool water, the standard addition method was employed to determine the actual concentrations of the UV filters.  相似文献   

20.
A rapid environmental pollution screening and monitoring workflow based on fabric phase sorptive extraction‐gas chromatography‐tandem mass spectrometry (FPSE‐GC‐MS/MS) is proposed for the first time for the analysis of 17 widespread used fungicides (metalaxyl, cyprodinil, tolylfluanid, procymidone, folpet, fludioxonil, myclobutanil, kresoxim methyl, iprovalicarb, benalaxyl, trifloxystrobin, fenhexamid, tebuconazole, iprodione, pyraclostrobin, azoxystrobin and dimethomorph) in environmental waters. The most critical parameters affecting FPSE, such as sample volume, matrix pH, desorption solvent and time, and ionic strength were optimized by statistical design of experiment to obtain the highest extraction efficiency. Under the optimized conditions, the proposed FPSE‐GC‐MS/MS method was validated in terms of linearity, repeatability, reproducibility, accuracy and precision. To assess matrix effects, recovery studies were performed employing different water matrices including ultrapure, fountain, river, spring, and tap water at 4 different concentration levels (0.1, 0.5, 1 and 5 µg/L). Recoveries were quantitative with values ranging between 70–115%, and relative standard deviation values lower than 14%. Limits of quantification were at the low ng/L for all the target fungicides. Finally, the validated FPSE‐GC‐MS/MS method was applied to real water samples, revealing the presence of 11 out of the 17 target fungicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号