首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The difluoromethyl group (CF2H) is considered to be a lipophilic and metabolically stable bioisostere of an amino (NH2) group. Therefore, methods that can rapidly convert an NH2 group into a CF2H group would be of great value to medicinal chemistry. We report herein an efficient Cu-catalyzed approach for the conversion of alkyl pyridinium salts, which can be readily synthesized from the corresponding alkyl amines, to their alkyl difluoromethane analogues. This method tolerates a broad range of functional groups and can be applied to the late-stage modification of complex amino-containing pharmaceuticals.  相似文献   

2.
The alkylation of unactivated β‐methylene C(sp3) H bonds of α‐amino acid substrates with a broad range of alkyl iodides using Pd(OAc)2 as the catalyst is described. The addition of NaOCN and 4‐Cl‐C6H4SO2NH2 was found to be crucial for the success of this transformation. The reaction is compatible with a diverse array of functional groups and proceeds with high diastereoselectivity. Furthermore, various β,β‐hetero‐dialkyl‐ and β‐alkyl‐β‐aryl‐α‐amino acids were prepared by sequential C(sp3) H functionalization of an alanine‐derived substrate, thus providing a versatile strategy for the stereoselective synthesis of unnatural β‐disubstituted α‐amino acids.  相似文献   

3.
Reported herein is the first efficient strategy to synthesize a broad range of unsymmetrical N‐CF3 hydrazines, which served as platform to unlock numerous currently inaccessible derivatives, such as tri‐ and tetra‐substituted N‐CF3 hydrazines, hydrazones, sulfonyl hydrazines, and valuable N‐CF3 indoles. These compounds proved to be remarkably robust, being compatible with acids, bases, and a wide range of synthetic manipulations. The feasibility of RN(CF3)‐NH2 to function as a directing group in C?H functionalization is also showcased.  相似文献   

4.
The alkylation of unactivated β‐methylene C(sp3)? H bonds of α‐amino acid substrates with a broad range of alkyl iodides using Pd(OAc)2 as the catalyst is described. The addition of NaOCN and 4‐Cl‐C6H4SO2NH2 was found to be crucial for the success of this transformation. The reaction is compatible with a diverse array of functional groups and proceeds with high diastereoselectivity. Furthermore, various β,β‐hetero‐dialkyl‐ and β‐alkyl‐β‐aryl‐α‐amino acids were prepared by sequential C(sp3)? H functionalization of an alanine‐derived substrate, thus providing a versatile strategy for the stereoselective synthesis of unnatural β‐disubstituted α‐amino acids.  相似文献   

5.
A copper‐CF2H complex generated in situ from copper thiocyanate and TMS? CF2H smoothly converts organothiocyanates into valuable difluoromethyl thioethers. This reaction step can be combined with several thiocyanation methods to one‐pot protocols, allowing late‐stage difluoromethylthiolations of widely available alkyl halides and arenediazonium salts. This strategy enables the introduction of difluoromethylthio groups—a largely unexplored substituent with highly promising properties—into drug‐like molecules.  相似文献   

6.
Trifluoromethylation of alkyl radicals is emerging as a powerful tool for C(sp3)–CF3 bond formations. Based on the hypothesis of CF3 group transfer from Cu(II)–CF3 to alkyl radicals, a number of trifluoromethylation reactions have been developed, including trifluoromethylation of alkyl halides, decarboxylative trifluoromethylation of aliphatic carboxylic acids, C(sp3)–H trifluoromethylation, amino‐ and carbo‐trifluoromethylation of alkenes, etc. Challenges in this intriguing field are also discussed.  相似文献   

7.
Benzoxazines containing various additional functional groups have been extensively reported to improve the properties of polybenzoxazines. In this work, a novel amino‐containing benzoxazine (PDETDA‐NH2) was conveniently synthesized from diethyltoluenediamine (DETDA), 2‐hydroxybenzaldehyde, and paraformaldehyde and was used as a hardener for diglycidyl ether of bisphenol‐A (DGEBA). The curing behaviors of PDETDA‐NH2 and PDETDA‐NH2/DGEBA systems were studied by DSC, FT‐IR, and 1H NMR. When curing, PDETDA‐NH2 was firstly polymerized to N,O‐acetal‐type polymer and then rearranged to Mannich‐type polymer at elevated temperature, while the addition reaction between amino and benzoxazine was discouraged because of the steric hindrance of alkyl substituents. During PDETDA‐NH2/DGEBA curing, it was found that the reactions happened in the order of addition polymerization of amino and epoxide, ring‐opening polymerization of benzoxazine, etherification between phenolic hydroxyl of the polymerized benzoxazine, and epoxide. Compared with DETDA cured DGEBA, PDETDA‐NH2 cured DGEBA showed higher modulus, higher char yield, and much lower water uptake.  相似文献   

8.
Reported herein is an unprecedented protocol for trifluoromethylation of unactivated aliphatic C(sp3)?H bonds. With Cu(OTf)2 as the catalyst, the reaction of N‐fluoro‐substituted carboxamides (or sulfonamides) with Zn(CF3)2 complexes provides the corresponding δ‐trifluoromethylated carboxamides (or sulfonamides) in satisfactory yields under mild reaction conditions. A radical mechanism involving 1,5‐hydrogen atom transfer of N‐radicals followed by CF3‐transfer from CuII?CF3 complexes to the thus formed alkyl radicals is proposed.  相似文献   

9.
The new electrophilic trifluoromethylating 1‐(trifluoromethyl)‐benziodoxole reagents A and B (Scheme 1) have been used to selectively attach CF3 groups to the S‐atom of cysteine side chains of α‐ and β‐peptides (up to 13‐residues‐long; products 7 – 14 ). Other functional groups in the substrates (amino, amido, carbamate, carboxylate, hydroxy, phenyl) are not attacked by these soft reagents. Depending on the conditions, the indole ring of a Trp residue may also be trifluoromethylated (in the 2‐position). The products are purified by chromatography, and identified by 1H‐, 13C‐, and 19F‐NMR spectroscopy, by CD spectroscopy, and by high‐resolution mass spectrometry. The CF3 groups, thus introduced, may be replaced by H (Na/NH3), an overall Cys/Ala conversion. The importance of trifluoromethylations in medicinal chemistry and possible applications of the method (spin‐labelling, imaging, PET) are discussed.  相似文献   

10.
The TiCl4‐mediated [3+3] cyclocondensation of various 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1‐chloro‐1,1‐difluoro‐4‐(trimethylsilyloxy)pent‐3‐en‐2‐one provides a regioselective access to novel 6‐(chlorodifluoromethyl)salicylates (=6‐(chlorodifluoromethyl)‐2‐hydroxybenzoates) with very good regioselectivity. For selected products, it was demonstrated that the CF2Cl group can be transformed to CF2H and CF2(Allyl) by free‐radical reactions.  相似文献   

11.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

12.
S‐((Phenylsulfonyl)difluoromethyl)thiophenium salts were designed and prepared by a triflic acid catalyzed intramolecular cyclization of ortho‐ethynyl aryldifluoromethyl sulfanes. The thiophenium salts were found to be efficient as electrophilic difluoromehtylating reagents for introduction of a CF2H group to sp3‐hybridized carbon nucleophiles such as of β‐ketoesters and dicyanoalkylidenes. The (phenylsulfonyl)difluoromethyl group can be readily transformed into CF2H under mild reaction conditions. Enantioselective electrophilic difluoromethylation was also achieved in the presence of bis(cinchona) alkaloids.  相似文献   

13.
A highly regioselective ortho‐benzoxylation of N‐alkyl benzamides with aromatic acids in the presence of [{RuCl2(p‐cymene)}2], AgSbF6, and (NH4)2S2O8 in 1,2‐dichloroethane at 100 °C for 24 h affording ortho‐benzoxylated N‐alkyl benzamides by C?H bond activation is described. Further, Ru‐catalyzed alkenylation is done at the ortho C?H bond of benzoxylated N‐alkyl benzamides with alkenes in water solvent. Subsequently, the benzoxyl moiety of N‐alkyl benzamides was converted into a hydroxyl group in the presence of base or acid. A possible reaction mechanism was proposed to account for the present coupling reaction.  相似文献   

14.
Procedures for preparing polyfluorinated ethers H(CF2CF2) n CH2OR by alkylation of the corresponding telomeric alcohols H(CF2CF2) n CH2OH (n = 1–3) with alkyl halides and alkyl tosylates were examined.  相似文献   

15.
A rare example of coordination at the amino group of NH2pym (2‐aminopyrimidine) relevant to N? H activation is described that leads to a novel AgI–imide 3D metal–organic framework (MOF). The coordination of AgI to NH2pym produced an electron‐withdrawing effect and thus increased its acidity, which facilitated the N? H activation and the subsequent formation of the Ag–imide bond. A cooperative metalation/deprotonation process for the N? H activation of NH2pym is suggested. Interestingly, photoluminescence of 1 is switched on at the low temperature of 77 K.  相似文献   

16.
A series of novel α‐fluoroalkyl ammonium salts was obtained from the corresponding cyano compounds or nitriles by reaction with anhydrous HF. Room‐temperature stable trifluoromethyl ammonium salts were obtained in quantitative yield in a one‐step reaction at ambient temperature from the commercially available starting materials BrCN or ClCN. The novel cations [CF3CF2NH3]+, [HCF2CF2NH3]+, and [(NH3CF2)2]2+ were obtained from CF3CN, HCF2CN, and (CN)2, respectively, and anhydrous HF. The aforementioned fluorinated ammonium cations were isolated as room temperature stable [AsF6]? and/or [SbF6]? salts, and characterized by multi‐nuclear NMR and vibrational spectroscopy. The salts [HCF2NH3][AsF6] and [CF3NH3][Sb2F11] were characterized by their X‐ray crystal structure.  相似文献   

17.
One-bond C-α,H coupling constants are reported for glycine, alanine, sarcosine and related di- and tripeptides. A detailed study of the pH dependence of 1J(C-α,H) has led to a determination of additive increments, ζ, for the functional groups NH3, NHCO? , COO?, and CONH? which can be used, together with known values for NH2, COOH and alkyl substituents, to calculate 1J(C-α,H) in amino acids and peptides.  相似文献   

18.
We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2H) group into alkenes by visible‐light‐driven photoredox catalysis. The use of fac‐[Ir(ppy)3] (ppy=2‐pyridylphenyl) photocatalyst and shelf‐stable Hu's reagent, N‐tosyl‐S‐difluoromethyl‐S‐phenylsulfoximine, as a CF2H source is the key to success. The well‐designed photoredox system achieves synthesis of not only β‐CF2H‐substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single‐step and regioselective formation of C(sp3)–CF2H and C(sp3)?O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.  相似文献   

19.
N-(difluoromethyl)amino (−NCF2H) compounds are of great interest given their unique and underexplored physiochemical properties. The lack of structural diversity in NCF2H compounds is likely due in part to the shortage of protocols for efficient installation. Presented herein is a new shelf-stable pyridinium reagent that enables the direct installation of the N-(difluoromethyl)sulfonamide moiety [N(Ts)CF2H)] onto (hetero)arenes and alkenes for the diversification of aryl and alkyl NCF2H compounds. The described protocol utilizes blue light photoredox catalysis and displays broad functional group tolerance with excellent chemoselectivity. Additional transformations and applicability towards a photoredox continuous flow protocol are also demonstrated.  相似文献   

20.
This work deals with design of maleimide monomer toward more precise control of alternating sequence for radical copolymerization with styrene. Crucial in this study is sequence analysis by MALDI‐TOF‐MS for resultant copolymers that was obtained via ruthenium‐catalyzed living radical copolymerization with a malonate‐based alkyl halide initiator showing selective initiation ability. The copolymers of a simple N‐alkyl maleimide [e.g., N‐ethyl maleimide (EMI)] with styrene gave complicated peak patterns for the MALDI‐TOF‐MS spectra indicating low degree of alternating sequence, in contrary to expectation from the reactivity ratios (almost zero). A simple substitution of methyl group (CH3) of EMI with trifluoromethyl (CF3: CF3‐MI) made the peak patterns much simpler giving the copolymer with higher alternating sequence. More interestingly, the peak interval of the copolymer at earlier polymerization stage was equal to sum of the molecular weights of CF3‐MI and styrene, suggesting possibility of the pair propagation of the monomers. Indeed, 1H NMR analyses of the mixture of maleimide with styrene suggested stronger interaction of CF3‐MI than EMI. Based on the results, maleimide derivatives carrying a substituent‐designable electron‐withdrawing group [ROC(?O)N–: R = substituent] were newly designed toward incorporation of functional side chains. They also gave higher alternating sequence for the copolymerization with styrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 367–375  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号