首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Boundary layer analysis is performed for free convection in a fluid-saturated porous medium adjacent to a vertical impermeable wall subjected to a non-uniform heat flux. The wall heat flux is assumed to be an arbitrary function of the distance along the surface. The solutions are obtained in the form of perturbations to the uniform heat flux case. Using the differentials of the wall heat flux, which are functions of the distance along the surface, as perturbation elements, universal functions are obtained. These universal functions can be used to estimate the heat transfer for any type of wall heat flux variation. For the wall heat flux variation as a power function of the distance from the origin, the solutions obtained by using these universal functions have been compared with those obtained by similarity analysis and the agreement is found to be good. Further, solutions are presented for wall heat flux varying exponentially and sinusoidally but comparison could not be drawn due to non-availability of solutions in the literature.  相似文献   

2.
 The effect of lateral mass flux on mixed convection heat and mass transfer in a saturated porous medium adjacent to an inclined permeable surface is analyzed. A similarity solution is obtained when surface temperature and concentration, free stream velocity and injection/suction velocity of fluid are prescribed as power functions of distance from the leading edge. The cases when the flow and buoyancy forces are in the same and opposite directions are discussed both for aiding and opposing buoyancy effects. The governing parameters are the mixed convection parameter Gr, the Lewis number Le, the buoyancy ratio N, the lateral mass flux parameter f w, representing the effects of injection or withdrawal of fluid at the wall, and λ which specifies three cases of the inclined plate. The interactive effect of these parameters on heat and mass transfer rates are presented. It is observed that the diffusion ratio (Le) has a more pronounced effect on concentration field than on flow and temperature fields. It is found that the rates of heat and mass transfer increase with suction and decrease with injection of the fluid. Received on 31 August 2000 / Published online: 29 November 2001  相似文献   

3.
The mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent fluid is analyzed using similarity solution technique. Wall temperature and stretching velocity are assumed to have specific exponential function forms. The influence of buoyancy along with viscous dissipation on the convective transport in the boundary layer region is analyzed in both aiding and opposing flow situations. The flow is governed by the mixed convection parameter Gr/Re2. The velocity and temperature inside the boundary layer are observed to be influenced by the parameters like Prandtl number Pr, Gebhart number Gb. Significant changes are observed in non-dimensional skin friction and heat transfer coefficients due to viscous dissipation in the medium. The flow and temperature distributions inside the boundary layer are analyzed and the results for non-dimensional skin friction and heat transfer coefficients are discussed through computer generated plots.  相似文献   

4.
An analysis is performed to study the flow and heat transfer characteristics of laminar mixed convection boundary layer flows from inclined (including horizontal and vertical) surfaces embedded in a saturated porous medium with constant aiding external flows and uniform surface temperature. Both the streamwise and normal components of the buoyancy forces are retained in the momentum equations. Nondimensionalization of the boundary layer equations results in the following three governing parameter: (1)Gr/Re, the ratio of the Grashof number to the Reynolds number; (2)Pe x =Re x Pr, the Peclet number; (3) φ, the angle of inclination from the horizontal. The resulting nonsimilar equations are solved by an efficient implicit finite-difference scheme. Numerical results are presented for flows with different values ofGr/Re in the range of 0 to 50, over a wide range of the Peclet numbersPe x, and various values of φ ranging from 0 to 90 degrees. It is found that the local surface heat transfer rate increases with increasing the local Peclet number. In addition, as the plate is tilted from the horizontal to the vertical orientation, the local Nusselt number increases for a given Peclet number and the effect of the buoyancy force on the surface heat transfer rate increases.  相似文献   

5.
This paper deals with the problem of combined (forced–free) convection in vertical eccentric annuli with simultaneously developing hydrodynamic and thermal boundary layers. A bipolar model has been developed and a numerical algorithm for solving this model is outlined. Results, not available in the literature, are presented for the developing velocity profiles, axial variation of pressure, full development length, and heat transfer parameters under thermal boundary conditions of having one of the annulus boundaries at a constant temperature while the other boundary is insulated. Both aiding and opposing free convection have been considered and possibilities of flow reversal occurrence have also been checked. After a distance from the channel entrance and provided that the value of Gr/Re is sufficiently large, aiding free convection can develop to overcome the fluid friction and the eccentric annular channel eventually works as a diffuser. The value of Gr/Re for which a vertical eccentric annular channel can work as a diffuser decreases as the eccentricity increases. The axial distance from the entrance at which the channel starts to work as a diffuser decreases as Gr/Re increases.  相似文献   

6.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

7.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

8.
The problem of steady mixed convection boundary layer flow over a vertical impermeable flat plate in a porous medium saturated with water at 4°C (maximum density) when the temperature of the plate varies as x m and the velocity outside boundary layer varies as x 2 m , where x measures the distance from the leading edge of the plate and m is a constant is studied. Both cases of the assisting and the opposing flows are considered. The plate is aligned parallel to a free stream velocity U oriented in the upward or downward direction, while the ambient temperature is T = T m (temperature at maximum density). The mathematical models for this problem are formulated, analyzed and simplified, and further transformed into non-dimensional form using non-dimensional variables. Next, the system of governing partial differential equations is transformed into a system of ordinary differential equations using the similarity variables. The resulting system of ordinary differential equations is solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results for the non-dimensional skin friction or shear stress, wall heat transfer, as well as the temperature profiles are obtained and discussed for different values of the mixed convection parameter λ and the power index m. All the numerical solutions are presented in the form of tables and figures. The results show that solutions are possible for large values of λ and m for the case of assisting flow. Dual solutions occurred for the case of opposing flow with limited admissible values of λ and m. In addition, separation of boundary layers occurred for opposing flow, and separation is delayed for the case of water at 4°C (maximum density) compared to water at normal temperature.  相似文献   

9.
The non-darcy mixed convection flows from heated vertical and horizontal plates in saturated porous media have been considered using boundary layer approximations. The flows are considered to be driven by multiple buoyancy forces. The similarity solutions for both vertical and horizontal plates have been obtained. The governing equations have been solved numerically using a shooting method. The heat transfer, mass transfer and skin friction are reduced due to inertial forces. Also, they increase with the buoyancy parameter for aiding flow and decrease for the opposing flow. For aiding flow, the heat and mass transfer coefficients are found to approach asymptotically the forced or free convection values as the buoyancy parameter approaches zero or infinity.  相似文献   

10.
This paper deals with a theoretical (numerical) analysis of the effects that blowing/injection and suction have on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the cylinder. Both cases of buoyancy forces aid and oppose the development of the boundary layer are considered. Similarity equations are derived and their solutions are dependent upon the mixed convection parameter, the non-dimensional transpiration parameter and the curvature parameter, as well as of the Prandtl number. Dual solutions for the previously studied mixed convection boundary layer flows over an impermeable surface of the cylinder are shown to exist also in the present problem for aiding and opposing flow situations.  相似文献   

11.
Sufficient conditions are found for the existence of similar solutions of the mixed convection flow of a Powell-Eyring fluid over a nonlinear stretching permeable sur- face in the presence of magnetic field. To achieve this, one parameter linear group trans- formation is applied. The governing momentum and energy equations are transformed to nonlinear ordinary differential equations by use of a similarity transformation. These equations are solved by the homotopy analysis method (HAM) to obtain the approximate solutions. The effects of magnetic field, suction, and buoyancy on the Powell-Eyring fluid flow with heat transfer inside the boundary layer are analyzed. The effects of the non- Newtonian fluid (Powell-Eyring model) parameters ε and δon the skin friction and local heat transfer coefficients for the cases of aiding and opposite flows are investigated and discussed. It is observed that the momentum boundary layer thickness increases and the thermal boundary layer thickness decreases with the increase in ε whereas the momentum boundary layer thickness decreases and thermal boundary layer thickness increases with the increase in δ for both the aiding and opposing mixed convection flows.  相似文献   

12.
The boundary layer flow over a uniformly moving vertical surface with suction or injection is studied when the buoyancy forces assist or oppose the flow. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity boundary conditions. The effect is of various governing parameters, such as Prandtl number Pr, temperature exponent n, injection parameter d, and the mixed convection parameter λ=Gr/Re2, which determine the velocity and temperature distributions and the heat transfer coefficient, are studied. The heat transfer coefficient increases as λ assisting the flow for all d at Pr=0.72 however, for n=−1 it decreases sharply with λ. On the other hand, increasing λ has no effect on heat transfer coefficient for Pr=10 at n=0, and 1 for almost all values of d studied. However, for n=−1 it has similar effect as for Pr=0.72. It is also found that Nusselt number increases as n increases for fixed λ and d. Received on 26 March 1997  相似文献   

13.
Coupled heat transfer between laminar forced convection along and conduction inside a flat plate wall is theoretically studied. The laminar convective boundary layer is analyzed by employing the integral technique. The energy equations for the fluid and the plate wall are combined under the condition of the continuity in the temperature and heat flux at the fluid-solid interface. The analysis results in a simple formal solution. Expressions have been obtained for calculating local Nusselt number, wall heat flux and temperature along the plate, all are functions of the local Brun number, Br x , which is a measure of the ratio of the thermal resistance of the plate to that of the convective boundary layer. The results indicate that for Br x ≥0.15, neglecting the plate resistance will results in an error of more than 5% in Nusselt number. Comparison of the present solution with other previous studies has been made. The solution may be of a considerable theoretical and practical interest. Received on 19 August 1998  相似文献   

14.
An analysis is performed to present a new self-similar solution of unsteady mixed convection boundary layer flow in the forward stagnation point region of a rotating sphere where the free stream velocity and the angular velocity of the rotating sphere vary continuously with time. It is shown that a self-similar solution is possible when the free stream velocity varies inversely with time. Both constant wall temperature and constant heat flux conditions have been considered in the present study. The system of ordinary differential equations governing the flow have been solved numerically using an implicit finite difference scheme in combination with a quasilinearization technique. It is observed that the surface shear stresses and the surface heat transfer parameters increase with the acceleration and rotation parameters. For a certain value of the acceleration parameter, the surface shear stress in x-direction vanishes and due to further reduction in the value of the acceleration parameter, reverse flow occurs in the x–component of the velocity profiles. The effect of buoyancy parameter is to increase the surface heat transfer rate for buoyancy assisting flow and to decrease it for buoyancy opposing flow. For a fixed buoyancy force, heating by constant heat flux yields a higher value of surface heat transfer rate than heating by constant wall temperature.  相似文献   

15.
Summary The effect of surface mass flux on the non-Darcy natural convection over a horizontal flat plate in a saturated porous medium is studied using similarity solution technique. Forchheimer extension is considered in the flow equations. The suction/injection velocity distribution has been assumed to have power function form Bx l , similar to that of the wall temperature distribution Ax n , where x is the distance from the leading edge. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The dynamic diffusivity is assumed to vary linearly with the velocity component in the x direction, i.e. along the hot wall. For the problem of constant heat flux from the surface (n=1/2), similarity solution is possible when the exponent l takes the value −1/2. Results indicate that the boundary layer thickness decreases whereas the heat transfer rate increases as the mass flux parameter passes from the injection domain to the suction domain. The increase in the thermal dispersion parameter is observed to favor the heat transfer by reducing the boundary layer thickness. The combined effect of thermal dispersion and fluid suction/injection on the heat transfer rate is discussed. Received 7 December 1995; accepted for publication 7 January 1997  相似文献   

16.
Boundary layer analysis is performed for free convection in a saturated porous medium adjacent to non-isothermal vertical impermeable surfaces. The impermeable surface temperature is assumed to be an arbitrary function of the distance along the surface. The solutions are obtained in the form of perturbations to the isothermal case. Using the differentials of the wall temperature, which are functions of distance along the surface, as perturbation elements, universal functions are derived. These universal functions can be used to estimate the heat transfer to any type of wall temperature variation. Solutions for some specialized wall temperature variations are derived using these universal functions and are compared with the solutions that are available in the literature. The agreement is found to be good. The case of uniform wall heat flux turns out to be a special case of non-isothermal wall solution.Es wurde eine Untersuchung der Grenzschicht bei freier Konvektion in einem gesättigten porösen Medium, das an eine nicht isotherme undurchlässige Oberfläche angrenzt, durchgeführt. Die Temperatur der undurchlässigen Oberfläche wurde als beliebige Ortsfunktion der Oberfläche angenommen. Lösungen werden in Form von Störungen des isothermen Falles erhalten. Unter Benutzung der Differentiale der Wandtemperatur, welche Ortsfunktionen der Oberfläche sind, werden als Störfunktion universelle Funktionen erhalten. Diese universellen Funktionen können benutzt werden, um die Wärmeübertragung für beliebige Variationen der Wandtemperatur zu bestimmen. Für einige spezielle Wandtemperaturen werden Lösungen unter Benutzung dieser universellen Funktionen abgeleitet und mit Lösungen aus der Literatur verglichen; gute Übereinstimmung kann festgestellt werden. Der Fall der einheitlichen Wandwärmestromdichte stellt sich als Spezialfall der nicht isothermen Lösung heraus.  相似文献   

17.
Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct are numerically investigated with the author's anisotropic low-Reynolds-number k-ε turbulence model. Special attenton has been given to the regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, instead of the common wall function approach, the no-slip boundary condition at the wall is directly used. Velocity and temperature profiles are predicted for fully developed turbulent flows with constant wall temperature. The predicted variations of both local wall shear stress and local wall heat flux are shown to be in close agreement with available experimental data. The present paper also presents the budget of turbulent kinetic energy equation and the systematic evaluation for existing wall function forms. The commonly adopted wall function forms that are valid for two-dimensional flows are found to be inadequate for three-dimensional turbulent flows in a square duct.  相似文献   

18.
This paper presents results on the combined effect of thermo‐solutal buoyancy forces on the recirculatory flow behavior in a horizontal channel with backward‐facing step and the ensuing impact on heat and mass transfer phenomena. The governing equations for double diffusive mixed convection are represented in velocity–vorticity form of momentum equations, velocity Poisson equations, energy and concentration equations. Galerkin's finite‐element method has been employed to solve the governing equations. Recirculatory flow fields with heat and mass transfer are simulated for opposing and aiding thermo‐solutal buoyancy forces by assuming suitable boundary conditions for energy and concentration equations. The effect of Richardson number (0.1?Ri?10) and buoyancy ratio (?10?N?10) on the recirculation bubble and Nusselt and Sherwood numbers are studied in detail. For Richardson number greater than unity, distinct variations in the gradients of Nusselt number and Sherwood number with buoyancy ratio are observed for flow regimes with opposing and aiding buoyancy forces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.  相似文献   

20.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2008,43(4):411-418
The mixed convection two-dimensional boundary layer flow of a micropolar fluid near the stagnation point on a stretching vertical sheet is investigated. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation point. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a finite-difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed. Both assisting and opposing flows are considered. Results are presented in terms of the skin friction coefficient and the local Nusselt number with selections of velocity, microrotation and temperature profiles. Dual solutions are found to exist for the opposing flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号