首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
[reaction: see text] The anion radicals of certain bis(enones), generated by cathodic reduction, are observed to participate in intramolecular cyclobutanation, yielding bicyclo[3.2.0]heptane derivatives through an anion radical chain mechanism. Evidence for stepwise cycloaddition involving distonic anion radical intermediates is presented. In addition to the novel anion radical cyclobutanations, an unprecedented intramolecular anion radical Diels-Alder product is observed. Parallel trends in substrate scope vis-à-vis the Co-catalyzed bis(enone) cyclobutanation are discussed.  相似文献   

2.
Exposure of easily reduced aromatic bis(enones) 1a-1e to the methyl Gilman reagent Me(2)CuLi.LiI at 0 degrees C in tetrahydrofuran solvent provides the products of tandem conjugate addition-Michael cyclization, 2a-2e, along with the products of [2 + 2] cycloaddition, 3a-3e. Complete partitioning of the Gilman alkylation and [2 + 2] cycloaddition pathways may be achieved by adjusting the loading of the Gilman reagent, the rate of addition of the Gilman reagent, and the concentration of the reaction mixture. The Gilman alkylation manifold is favored by the rapid addition of excess Gilman reagent at higher substrate concentrations, while the [2 + 2] cycloaddition manifold is favored by slow addition of the same Gilman reagent at lower concentrations and loadings. Notably, [2 + 2] cycloaddition to form 3a-3e is catalytic in Gilman reagent. Kinetic data reveal that the ratio of 2a and 3a changes such that the cycloaddition pathway becomes dominant upon increased consumption of Gilman reagent. These data suggest a concentration-dependent speciation of the Gilman reagent and differential reactivity of the aggregates present at higher and lower concentrations. While the species present at higher concentration induce Gilman alkylation en route to products 2a-2e, the species present at lower concentration provide products of catalytic [2 + 2] cycloaddition, 3a-3e. Moreover, upon electrochemical reduction of the bis(enones) 1a-1e, or chemically induced single-electron transfer from arene anion radicals, the very same [2 + 2] cycloadducts 3a-3e are formed. The collective data suggest that [2 + 2] cycloadducts 3a-3e arising under Gilman conditions may be products of anion radical chain cyclobutanation that derive via electron transfer (ET) from the Me(2)CuLi.LiI aggregate(s) present at low concentration. These observations provide a link between the Gilman alkylation reaction and related ET chemistry and suggest these reaction paths are mechanistically distinct. This analysis is made possible by the recent observation that easily reduced bis(enones) are subject to intramolecular [2 + 2] cycloaddition upon cathodic reduction or chemically induced ET from arene anion radicals, and is herewith showcased as a novel method of testing for the intermediacy of enone anion radicals.  相似文献   

3.
Efficient visible light photocatalysis of [2+2] enone cycloadditions   总被引:1,自引:0,他引:1  
We report that Ru(bipy)3Cl2 can serve as a visible light photocatalyst for [2+2] enone cycloadditions. A variety of aryl enones participate readily in the reaction, and the diastereoselectivity in the formation of the cyclobutane products is excellent. We propose a mechanism in which a photogenerated Ru(bipy)3+ complex promotes one-electron reduction of the enone substrate, which undergoes subsequent radical anion cycloaddition. The efficiency of this process is extremely high, which allows rapid, high-yielding [2+2] cyclizations to be conducted using incident sunlight as the only source of irradiation.  相似文献   

4.
Work carried out in the past few years aimed at elucidating the mechanism of initiation of vinyl polymerization when a donor and an acceptor molecule, one or both of which may be vinyl monomers, is summarized. The emphasis of our investigation has been on polymerizable ether donors and strong electron acceptors which do not undergo polymerization, or the acceptor vinylidene cyanide. Alkyl vinyl ethers were polymerized in the presence of tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in polar solvents. Observation of the ESR spectrum of the DDQ radical anion and the isolation of a 1:1 addition product of DDQ and alkyl vinyl ether when the two are mixed in a 1:1 ratio and quenched in alcohol support an initiation mechanism involving a coupling reaction of the donor monomer (radical cation) and the acceptor initiator (radical anion). The reaction of vinylidene cyanide (VC) with the vinyl ethers p-dioxene, dihydropyran, ethyl vinyl ether, isopropyl vinyl ether, and ketene diethylacetal in a variety of solvents at 25°C spontaneously afforded poly(vinylidene cyanide), the cycloaddition products 7,7-dicyano-2,5-dioxo-bicyclo[4.2.0] octane, 8,8-dicyano-2-oxo-bicyclo[4.2.0] octane, the 1,1-dicyano-2-alkoxycyclo-butanes, and 1,1-diethoxy-2,2,4,4-tetracyanohexane, respectively, and with the exception of p-dioxene, homopolymers of the vinyl ethers. In the presence of AIBN at 80°C, alternating copolymers were obtained in addition to the homopolymers and cycloaddition products, supporting the involvement of donor-acceptor complexes. The reaction of styrene with VC spontaneously formed an alternating copolymer in addition to the 1:2 head-to-head cycloaddition product, 1,1,3,3-tetracyano-4-phenylcyclohexane. Mixing VC with any one of the cyclic ethers tetrahydrofuran, oxetane, 2,2-dimethyloxirane, 2-chloromethyloxirane, and phenyloxirane resulted in the polymerization of both the VC and the cyclic ether to afford homopolymers of both. The cyclic ethers trioxane, 3,3-bis(chloromethyl)oxetane, and oxirane initiated the polymerization of VC, but did not undergo ring-opening polymerizations themselves. Other ethers such as 1,3-dioxolane, tetrahydropyran, and diethyl ether did not initiate the polymerization of VC. In these polymerizations, VC and the cyclic ethers polymerize via anionic and cationic propagation reactions, respectively.  相似文献   

5.
One-electron reduction significantly enhances the ability of anthralin, 1, to act as a hydrogen atom donor. On annealing of an MTHF glass in which the radical anion of anthralin, 1*-, is generated radiolytically, this species decays mainly by loss of H* to give the anthralyl anion, 2- . On the other hand, radicals formed on radiolysis of matrices that are suitable for the generation of radical anions or cations are capable to abstract H* from anthralin to give the anthralyl radical, 2* . Both 2- and 2* are obtained simultaneously by mesolytic cleavage of the radical anion of the anthralin dimer. Contrary to general assumptions, the anthralyl radical is found to be much more reactive toward oxygen than the anion. All intermediates are characterized spectroscopically and by reference to quantum chemical calculations. Attempts to generate the radical cation of anthralin by X-irradiation of an Ar matrix containing anthralin led also to significant formation of its radical anion, i.e., anthralin acts apparently as an efficient electron trap in such experiments.  相似文献   

6.
A zinc(II)porphyrin-based ion porous organic polymer (ZnTPyPBr4-iPOP) is successfully synthesized from newly designed pyridinium-functionalized cationic Zn-porphyrin monomer (ZnTPyPBr4) by free radical self-polymerization, and is employed as an efficient bifunctional heterogeneous catalyst for CO2 cycloaddition reaction with epoxides. The ZnTPyPBr4-iPOP exhibits excellent catalytic performance and good substrate expansion in CO2 cycloaddition reaction under solvent-free and cocatalyst-free conditions with a TOF as high as 15,500 h−1 for the cycloaddition of CO2 and epichlorohydrin. The synergistic effect of zinc(II)porphyrin as the Lewis acidic site and the Br anion as the nucleophile in ZnTPyPBr4-iPOP responds to the high catalytic activity. Moreover, ZnTPyPBr4-iPOP can easily be recovered and reused at least seven times without the loss of activity. This work provides a valuable approach for the synthesis of novel and efficient heterogeneous catalyst for CO2 cycloaddition.  相似文献   

7.
The low-temperature (-100 degrees C) dehydrohalogenation of bromocyclooctatetraene followed by immediate electron-transfer yields a stable solution of the [8]annulyne anion radical. If the unstable [8]annulyne is reacted with itself, cyclobutadiene, or benzyne, the respective bi-[8]annulenylene, [6]annuleno[8]annulene, or [6]-[8]annulenylene can be trapped as their anion radicals via one-electron transfer. These condensation products were all obtained from simple [2 + 2] cycloaddition reactions. B3LYP/6-31G geometry optimizations were carried out, and the calculated spin densities were compared to the EPR spectral results obtained for the anion radicals of [6]annuleno[8]annulene, [8]annulyne, bi[8]annulenylene, and [6]-[8]annulenylene, and excellent agreement has been realized. This simple "one-pot" approach should be applicable to a wide range of such systems.  相似文献   

8.
The Copper(II) chelate catalyzed thermal cycloaddition of ethyl diazoacetate, dimethyl diazomalonate, ethyl-2-diazo-3-oxobutyrate, and ethyl diazopyruvate, representatives of diazocarbonyl additions that yield cyclopropanes and dihydrofurans, respectively, to olefins, has been examined in terms of the possible participation of radical species in intermediary stages. To this purpose, the title diazocarbonyl compounds were exposed to 1-methyl-1-cyclopropylethylene and 1,1-dicyclopropylethylene under catalytic conditions. The absence of cyclopropylcarbinyl radical to butenyl radical rearrangement products in cyclopropanations as well as in those reactions that furnish heterocycles suggests that intermediates of free radical nature may not be involved in the cycloaddition process. In turn, the strong electron donor capability of cyclopropyl substituents is interpreted as allusive of a non synchronous 1,3-dipolar cycloaddition of transient metal carbenes to the olefin with possible charge polarization.  相似文献   

9.
The aryne [3 + 2] cycloaddition process with pyridinium imides breaks the aromaticity of the pyridine ring. By equipping the imide nitrogen with a sulfonyl group, the intermediate readily eliminates a sulfinate anion to restore the aromaticity, leading to the formation of pyrido[1,2-b]indazoles. The scope and limitation of this reaction are discussed. As an extension of this chemistry, N-tosylisoquinolinium imides, generated in situ from N'-(2-alkynylbenzylidene)-tosylhydrazides via an AgOTf-catalyzed 6-endo-dig electrophilic cyclization, readily undergo aryne [3 + 2] cycloaddition to afford indazolo[3,2-a]-isoquinolines in the same pot, offering a highly efficient route to these potential anticancer agents.  相似文献   

10.
C60 can be reduced to its trianion anion radical in hexamethylphosphoramide with potassium or cesium metal. The addition of water to these solutions, followed by toluene extraction, yields materials that exhibit the expected mass spectral peaks for the Birch reduction products of C 60 *3- (C60Hn). However, when cyclooctatetraene (COT) is present in the solution, the mass spectral signature for the Birch reduction products of M+@C60-COT*3- and C60-COT*3- are also found. The trianion radical of C60 reacts with COT in HMPA to yield a [2 + 2] cycloaddition product, and subsequent ring opening provides a passageway for the Cs+ or K+ counterion to the interior of the fullerene. Analogous results are not observed when the smaller metals (Na and Li) are used as the reducing agents. Only the larger alkali metal cations form tight ion pairs with the trianion of C60-COT. The tight ion association is necessary to bring the cation into a sufficiently close proximity to the trianion for the cation to proceed to the interior.  相似文献   

11.
Thiamine derivatives that are cheap, readily available, non-toxic and green are used as heterogeneous catalyst for the generation of cyclic carbonates through cycloaddition of CO_2 to epoxides without the need of co-catalyst and solvent. The interaction between thiamine hydrochloride(VB_1-Cl) and substrates(CO_2 and propylene oxide) was proven by ultraviolet-visible spectroscopy and ~1H nuclear magnetic resonance analysis, and it is deduced that the synergistic action among multi-functional groups(hydroxyl, halide anion and amine) is a favorable factor for cycloaddition reaction. A series of VB_1/GO aerogels were facilely prepared through the addition of aqueous VB_1 derivatives to a suspension of GO in ethanol at room temperature. It was found that the aerogel generated through the interaction of VB_1-Cl with GO shows catalytic activity and stability higher than those of VB_1-Cl. It is because the electrostatic interaction between GO and VB_1-Cl enhances the nucleophilicity and leaving ability of anion. The effects of reaction temperature, catalyst loading, CO_2 pressure and reaction time on CO_2 cycloaddition to propylene oxide were thoroughly studied.  相似文献   

12.
A direct (3+2) cycloaddition between alkenes and vinyl diazo reagents using either Cr or Ru photocatalysis is described. The intermediacy of a radical cation species enables a nucleophilic interception by vinyl diazo compounds, a departure from their traditional electrophilic behavior. A variety of cyclopentenes are synthesized using this method, and experimental insights implicate a direct cycloaddition instead of a cyclopropanation/rearrangement process.  相似文献   

13.
高翔  张晓跃  张丹维  刘颖  吴世晖 《化学学报》2003,61(10):1686-1691
烯丙胺类化合物与C_(60)在热引发下发生新型的[3+2]环加成反应。反应有较 好的立体选择性。该反应可能经过了热引发的烯丙胺的单电子转移过程,产生烯丙 基自由基,并进一步与C_(60)加成及环化。文中C_(60)衍生物的结构均经过谱学方 法确证。  相似文献   

14.
The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.  相似文献   

15.
Alina Borovika  Pavel Nagorny 《Tetrahedron》2013,69(27-28):5719-5725
The first asymmetric chiral N-triflylphosphoramide-catalyzed ionic [2+4] cycloaddition reaction of unsaturated acetals is described. This reaction proceeds through the intermediacy of a vinyl oxocarbenium/chiral anion pair, and the chiral N-triflylphosphoramide anion controls the stereoselectivity of the cycloaddition step. Moderate enantioselectivities (up to 80:20 e.r.) have been obtained when α,β-unsaturated dioxolanes were employed as the dienophiles. These reactions demonstrate strong dependence on the counterion coordinating properties and solvent polarity, a behavior characteristic of oxocarbenium ions.  相似文献   

16.
Heating dipolarophiles with 4-alkyl-3-hydroxy-2H-pyrazolo[4,3-c]isoquinolinium hydroxide inner salts results in [3 + 2] cycloaddition across positions 3a and 5 of the aromatic system to give the [3 + 2] cycloadducts in good yield. When the 4-alkyl substituent is a 2-acetate ester and the methylene group can be deprotonated, a second mode of [3 + 2] cycloaddition becomes available for the resulting anion (across the side chain methine group and position 5 of the aromatic system) and occurs under basic conditions, allowing either of two modes of [3 + 2] cycloaddition to be selected by appropriate choice of reaction conditions.  相似文献   

17.
Isobenzofulvene species are versatile synthons in organic chemistry, which have been employed in diverse challenging higher-order cycloaddition reactions. Here, the first chemoselective and asymmetric cross [10+2] cycloaddition reaction between activated 2-alkylidene-1-indanones and a variety of electron-deficient alkenes has been developed, relying on the in situ generation of dearomative 1-hydroxyl isobenzofulvene anion intermediates under the catalysis of a newly designed bulky cinchona-derived phase-transfer compound. An array of fused frameworks with multifunctionalities were generally furnished in excellent diastereo- and enantioselectivity, even at 1 mol % catalyst loadings.  相似文献   

18.
The open-shell benzoylnitrene radical anion, readily generated by electron ionization of benzoylazide, undergoes unique chemical reactivity with radical reagents and Lewis acids in the gas phase. Reaction with nitric oxide, NO, proceeds by loss of N2 and formation of benzoate ion. This novel reaction is also observed to occur with phenylnitrene anion, forming phenoxide. Similar reactivity was observed in the reaction between benzoylnitrene radical anion and NO2, forming benzoate ion and nitrous oxide. Electronic structure calculations indicate that the reaction has a high-energy barrier that is overcome by the energy released by bond formation. Benzoylnitrene radical anion also transfers oxygen anion to NO and NO2 as well as to CS2 and SO2. In contrast, phenylnitrene anion reacts with carbon disulfide by C+ or CS+ abstraction, forming S- or S2-. Electronic structure calculations indicate that benzoylnitrene in the ground state resembles a slightly polarized benzoate anion, but with a free radical localized on the nitrogen.  相似文献   

19.
Treatment of N-tosyliodoaziridine derivatives with Et(3)B efficiently produces various azahomoallyl radical (2-akenylamidyl radical) species which give oxygen-functionalized pyrrolidine derivatives through iodine atom transfer [3 + 2] cycloaddition with electron-rich alkenes such as enol ethers and ketene acetal. The present cycloaddition reaction proceeds regioselectively via C-N bond cleavage of an aziridinylalkyl radical intermediate and addition of the resulting azahomoallyl radicals to the terminal carbon of an alkene. The reaction of alkenes with the cyclohexenylamidyl radical generated from an optically active bicyclic iodoaziridine [(1S,2S,6S)-2-iodo-7-(p-toluenesulfonyl)-7-azabicyclo[4.1.0]heptane, 94% ee] also proceeds to give optically active octahydroindole derivatives (84-93% ee).  相似文献   

20.
Short synthetic routes to a range of BEDT-TTF derivatives functionalised with two, four or eight hydroxyl groups are reported, of interest because of their potential for introducing hydrogen bonding between donor and anion into their radical cation salts. The cycloaddition of 1,3-dithiole-2,4,5-trithione with alkenes to construct 5,6-dihydro-1,3-dithiolo[4,5-b]1,4-dithiin-2-thiones is a key step, with homo- or hetero-coupling procedures and O-deprotection completing the syntheses. The first synthesis of a single diastereomer of tetrakis(hydroxymethyl)BEDT-TTF, the cis,trans product, was achieved by careful choice of O-protecting groups to facilitate separation of homo- and hetero-coupled products. Cyclisation of the trithione with enantiopure 1R,2R,5R,6R-bis(O,O-isopropylidene)hex-3-ene-1,2,5,6-tetrol (from D-mannitol) gave two separable diastereomeric thiones, which can be transformed to enantiomeric BEDT-TTF derivatives with four or eight hydroxyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号