首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A full-duplex radio-over-fiber (RoF) link with a novel scheme to generate 60 GHz mm-waves from a 5 GHz RF signal source is investigated. In the RoF downlink, the required frequency of the RF oscillator is reduced greatly. Since the optical carrier is not modulated by downstream data, part of it is reused to carry upstream data and the upstream data is transmitted to the central station using optical single-sideband modulation. In this way, a single wavelength is used for both downstream and upstream transmissions. Based on this scheme, a full-duplex RoF link is built and its transmission performance is analyzed. Theoretical analysis and numerical simulation show that the downstream signal cannot only eliminate code form distortion caused by time shift of the code edges, but also reduce the influence of the fading effect as the 60 GHz DSB optical mm-wave signal is transmitted along the fiber, and the upstream signal is immune to both fading effect and time shift of the code edges.  相似文献   

2.
This paper proposes and numerically investigates a novel high-speed wavelength-division-multiplexed passive optical network (WDM-PON) architecture with colorless user terminals based on the use of orthogonal modulation scheme for downstream and upstream transmission. The 40 Gb/s optical frequency shift keyed (FSK) downstream data is generated based on carrier-suppressed modulation. At optical network unit, the downstream signal is directly re-modulated by the 2.5 Gb/s up-stream data and sent back with the same fiber. Error free transmission over 20 km single mode fiber can be observed for both downstream and upstream signals in our simulation. Power budget, tolerance of channel spacing, FSK tone spacing and dispersion are all investigated. Factors that might influence the stability of the system are analyzed and an extended hybrid wired/wireless version of the scheme is also given.  相似文献   

3.
In this paper, a new bidirectional wavelength division multiplexing radio-over-fiber (WDM-RoF) using Subcarrier Multiplexing/Amplitude Shift Keying (SCM/ASK) is proposed which shares the same wavelengths for both up-link and down-link. A bidirectional reflective filter (BRF) is utilized in the upstream link to provide a reliable bidirectional optical channel. WDM is used to further increase the capacity of system. Simulation of the proposed scheme demonstrates 1 Gbps down- and up-link data stream for 16 channels over the length of 25 km with acceptable Q-factor (>6 dB).  相似文献   

4.
An all-optical scheme for simultaneously realizing OR and AND logic gates based on three-input four-wave mixing (FWM) arising in a single semiconductor optical amplifier (SOA) is proposed and demonstrated. It has the ability to process not only conventional non-return-to-zero-ON-OFF-keying (NRZ-OOK) and return-to-zero-OOK (RZ-OOK) formats but also carrier-suppressed return-to-zero-OOK (CSRZ-OOK) format signals. Firstly, the performance of 40 Gb/s logic operation is numerically evaluated by a comprehensive dynamic SOA model considering three input signal induced FWM effect. Then, 10 Gb/s experimental demonstrations with clear waveforms and high extinction ratios (ERs) further verify the logic integrity of this scheme. Thus, the OR and AND logic gates simultaneously achieved within a single logic unit is compact and cost-effective for future optical signal processing applications.  相似文献   

5.
We have proposed and demonstrated a novel Mach-Zehnder modulation technique which employs a 1 × 4 multimode interference MMI coupler and four optical phase-modulator waveguides to generate optical single sideband (SSB) signals in radio-over-fiber (ROF) transmission link. It is shown that when the RF (radio frequency) modulation index is large, the optical SSB signal generated by conventional modulation scheme contains a significant part of undesired higher order harmonics, accordingly, much distortion in the RF signal was detected at the base station (BS). However, the main undesired higher order harmonics can be suppressed using our proposed modulation scheme and the performance of the transmission links were largely improved in single-channel and dense wavelength-division multiplexing (DWDM) cases.  相似文献   

6.
A novel full-duplex radio-over-fiber system is proposed and demonstrated, in which an external modulator and an optical interleaver are used to generate dual octupling-frequency optical millimeter waves for two base stations and wavelength reuse for uplink connection. This scheme is simplified and low-cost because no additional laser is utilized for uplink connection at two base stations and one laser at central office works for two base stations simultaneously. The frequency of local oscillator signal is reduced largely due to frequency octupling. The theorem about how to generate optical millimeter waves is analyzed. The simulation results show that the bidirectional 5 Gb/s system has a perfect performance because the power penalty for the downlink and uplink signals of two base stations are less than 0.6 dB after successful transmission over 60 km standard single mode fiber.  相似文献   

7.
Hongwu Yang  Junqiang Sun  Qiujiao Du 《Optik》2010,121(22):2044-2048
We propose and simulate a novel full-duplex radio-over-fiber system using a single light source at central station (CS). The scheme is employed to generate 60-GHz optical millimeter wave at CS for down-link transmission while the same optical carrier is reused at base station for up-link connection. There is no additional laser source for the upstream data generation in the base station. The bidirectional full-duplex 2.5 Gb/s data are successfully transmitted over 40 km standard single-mode fiber (SMF). The power penalty for the down-link data after transmission over 40 km SMF is less than 0.6 dB, while for the up-link data, the power penalty after transmission over 40 km SMF is neglected. This system shows good performance over long-distance delivery and has important applicable value in high radio frequency (RF) sector and multi-channel full-duplex system.  相似文献   

8.
In this paper, a bidirectional Fiber To The Home (FTTH) is proposed where WDM transmitter is used as a seeding source with wavelength of 1550 nm. The system utilizes a Travelling wave Semiconductor Optical Amplifier (TSOA) with injection current 0.15A. 50 km range FTTH architecture is demonstrated for both downstream and upstream channels. We investigated the impact of different data rates on upstream and downstream data. The BER results show that the performance of our scheme is good for 10 Gbps system for downstream transmission as it accommodates 64 ONUs. From simulation results show the BER of 9.95e-009 is reported at 15 Gbps but only in case of 32 ONUs. Similarly, in case of upstream transmission, Q-Factor of 15.04 dB is reported for 32 ONUs. So this scheme is a practical solution to meet the data rate of the optical links simultaneously in tomorrow's PON access networks.  相似文献   

9.
A filter-free scheme for ultrawideband (UWB) generation with single semiconductor optical amplifier (SOA) is proposed and demonstrated. A pair of polarity-reversed optical pulses is generated due to cross gain modulation (XGM) in the pump-probe scheme, whereas the amplified pump pulse becomes sharp at its leading edge such that the power peak is shifted forward. Hence, the combination of the pump and probe signals at the SOA output is quasi-monocycle shape. Our scheme is an improved scheme to avoid exploiting optical filters and time-delay devices. The generated UWB radio frequency spectrum shows good stability when the input probe power varies from −10 dBm to 6 dBm, the probe wavelength varies in the whole C-band, and the bias current varies from 100 mA to 240 mA. Although the generated quasi-monocycle deviates from a standard Gauss monocycle to some extent, the frequency spectrum conforms to the UWB regulation. Two SOAs with different XGM dynamics are compared in generating UWB signals.  相似文献   

10.
In this paper, a fiber optic communication system has been employed using co-existing 10 G/2.5 G asymmetric gigabit passive optical network (XG-PON) architecture. In this system, bidirectional optical fiber has been used for upstream and downstream data transmission. The system performance has been investigated for non-return-to-zero (NRZ) and return-to-zero (RZ) data formats operating at varying bit rates by varying the length of the fiber for analyzing the feasibility of this co-existence. The results have been compared for NRZ and RZ formats for upstream and downstream data in terms of Q value and eye opening. It is observed that RZ modulation format is superior as compared to conventional NRZ format and the faithful transmission of signal has been carried up to 90 km at 1577 nm for downstream and 140 km at 1270 nm for upstream.  相似文献   

11.
A fiber-based wavelength-division-multiplexing (WDM) network utilizing polarization multiplexing (PolMUX) is proposed to simultaneously provide broadband wireless and wired services. In such a dual-service access network, the wireless and wired services are separately delivered in two orthogonal states of polarization with well independence in a single WDM channel. The impact of several polarization-dependent interferences becomes insignificant due to the relatively short transmission distance in access networks. The feasibility of PolMUX is experimentally demonstrated with a power penalty at BER = 10-9 of about 0.5 dB and 1 dB for 2.5 Gb/s wired and wireless downstream services, respectively. The proposed system is compatible with the current reported techniques in either WDM passive optical networks (WDM-PON) or radio-over-fiber (ROF) systems.  相似文献   

12.
Fan Li 《Optics Communications》2011,284(19):4699-4705
In this paper, a novel technique is proposed and experimentally demonstrated to reduce the effect of frequency fading (FF) and imperfect frequency response in direct-detection (DD) optical orthogonal frequency division multiplexing-radio-over-fiber (OFD-MROF) systems. To overcome FF effect in the optical fiber and imperfect frequency response in the optical and electrical devices at the high frequency, we pre-emphasize the power of the millimeter wave (mm-wave) OFDM sub-carriers appropriately in the center station. Experimental result of the proposed system shows the received sensitivity has been improved about 2 dB at the BER of 1 × 10− 4 after 50 km SSMF transmission for 2.5 Gb/s OFDM signal carried on 60 GHz optical mm-wave compared to the original system without pre-emphasis technique.  相似文献   

13.
In this letter, we propose a new architecture of Time Wavelength Division Multiplexing Passive Optical Network (TWDM PON) system to support dynamic multi wavelength allocation (DMWA) in both upstream and downstream directions using an integrated semiconductor optical amplifier (SOA) and arrayed waveguide grating (AWG) with multi wavelength select continuous wave (CW) pump probe signal module. The significance of this architecture is the flexible routing function with the capability of multicasting and broadcasting between multiple optical line terminal (OLT) PON port with multiple optical distribution network (ODN) link using a new wavelength tuning free (WTF) OLT transmitter module to eliminate wavelength tuning delay in downstream signal utilizing multicasting Cross Gain Modulation (XGM) wavelength conversion. The experimental results show that 4λ × 10-Gb/s TWDM PON system can be used to connect 4096 users with the conventional fixed wavelength OLT transceivers with 36 dB link loss.  相似文献   

14.
A novel scheme is proposed for frequency sextupling mm-wave generation based on a laser and an integrated dual-parallel Mach-Zehnder modulator (MZM) without optical filter. Theoretical analysis is presented to suppress the undesired optical sidebands for the high quality generation of frequency sextupling mm-wave signal. The performance of the proposed scheme is evaluated by simulations. Utilizing the integrated MZM consisted of two sub-MZMs with extinction ratio of 30 dB, the optical sideband suppression ratio (OSSR) is as high as 29.9 dB and the radio frequency spurious suppression ratio (RFSSR) exceeds 24 dB without any optical or electrical filter. The impact of the nonideal RF driven voltage and phase difference of RF driven signal applied to two sub-MZMs of the integrated MZM on OSSR and RFSSR is discussed and analyzed. After transmission over fiber, the generated optical mm-wave signal demonstrates good performance. Furthermore, the performance of two cases for the proposed scheme is also compared.  相似文献   

15.
We proposed and simulatedly demonstrated a novel full-duplex radio-over-fiber system using an external modulator and an optical interleaver to generate dual quadrupling-frequency optical millimeter waves for carrying two base station downstream data and wavelength reuse for uplink connection. The simulation results reveal that the power penalties for the downstream and upstream signals of both base stations are less than 0.8 dB. In this new scheme, the configuration of the both base stations is simplified further because there is no additional laser at two base stations. The frequency of local oscillator signal is reduced due to frequency quadrupling. The cost of the new system is largely reduced.  相似文献   

16.
In a distributed Raman fiber amplifier (DRFA), Raman amplification allows a lower signal launch powers to transverse the span above the noise floor while still increasing the optical signal-to-noise ratio (OSNR). It improves the noise figure and reduces the nonlinear penalty of fiber systems. In this paper, we demonstrate a new trend of OSNR at different pump configurations: forward, backward and bidirectional pumping for DRFAs as a function of fiber length. We also present the variation of OSNR with both input pump power and input signal power. It is found that forward pumping provides the highest OSNR, reaching its maximum value of 37 dB. However, backward pumping provides the smallest OSNR that has its maximum of 22 dB and the bidirectional pumping provides the moderate OSNR between the others having its peak of 26 dB.  相似文献   

17.
In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10−9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10−9.  相似文献   

18.
We present an optical scheme for photonic frequency up-conversion at the millimeter-wave bands based on Semiconductor Optical Amplifier. The proposed scheme modulates the bias current with the Intermediate Frequency in order to achieve frequency mixing of an incoming optical signal modulated with the Local Oscillator. Theory indicates that the proposed scheme supports data bandwidths in the tens of GHz for LO values above 10 GHz. This scheme allows for photonic integration of the considered optical devices. A laboratory demonstration of the scheme for up-conversion to the 40 GHz band, using narrow-band IF signals, showed relatively low thresholds for the optical input power and bias current level to achieve error free operation: − 14.5 dBm 100 mA for a 64-QAM signal. Spurious-Free Dynamic Range showed an acceptable performance, with a linearity about 52.5 dB·Hz2/3 for an optical input power of − 6 dBm.  相似文献   

19.
Hong Wen 《Optics Communications》2008,281(8):2083-2088
In this paper, we present a full-duplex radio-over-fiber system incorporating both optical millimeter-wave (mm-wave) generation and wavelength reuse for uplink connection. The optical double sidebands (DSB) signal is generated by using only one inexpensive broadband direct modulation laser (DML), to which a mixing RF signal is applied. An optical interleaver is then used to separate the first-order optical sidebands from the optical carrier of optical DSB signal. The separated first-order optical sidebands are beat to generate mm-wave signal that has double the frequency of the RF drive signal, while the separated optical carrier is reused as light source to remodulate uplink signal. Both detailed theoretical analysis and experiments to demonstrate the feasibility of the proposed system are presented. Experiment result shows that the bidirectional 2.5 Gb/s data can be successfully transmitted over 40 km standard single-mode fiber (SSMF) with less than 2 dB power penalty.  相似文献   

20.
In this paper, we propose a novel and cost effective system for optical millimeter-wave (mm-wave) generation and transmission of downstream data based on a gain switched laser (GSL). The GSL produces an optical comb spectrum that can be appropriately filtered to generate two optical sidebands spaced by more than 4 times the repetition rate of the GSL. These sidebands are modulated by baseband data and then transmitted via optical fiber to the remote antenna unit (RAU). At the RAU, the two sidebands are heterodyned using a photodetector to generate the electrical modulated mm-wave signal, before demodulation using self mixing. We demonstrate the distribution of 1.25 Gbit/s data OOK modulated onto a 60 GHz carrier, similar to that used in the IEEE 802.15.3c draft standard, over fiber lengths up to 62 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号