首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lead zirconate titanate (PZT) thin films are deposited on platinized silicon substrate by sol-gel process. The crystal structure and surface morphology of PZT thin films are characterized by X-ray diffraction and atomic force microscopy. Depth-sensing nanoindentation system is used to measure mechanical characteristics of PZT thin films. X-ray diffraction analyses confirm the single-phase perovskite structures of all PZT thin films. Nanoindentation measurements reveal that the indentation modulus and hardness of PZT thin films are related with the grain size and crystalline orientation. The increases of the indentation modulus and hardness with grain size are observed, indicating the reverse Hall-Petch effect. Furthermore, the indentation modulus of (1 1 1)-oriented PZT thin film is higher than those of (1 0 0)- and random-oriented films. The consistency between experimental data and numerical results of the effective indentation moduli for fiber-textured PZT thin films using Voigt-Reuss-Hill model is obtained.  相似文献   

2.
Mechanical properties of thin films on substrates can be evaluated directly through nanoindentation. For a comprehensive study, thin films should be characterized via Young’s modulus, yield stress and strain-hardening exponent at constant temperature. In this paper, we evaluate these effects of thin films on silicon substrate through finite element analysis. Thin films, from soft to hard relative to the silicon substrate, are investigated in three categories: soft films on hard substrates, soft to hard films on no elastic mismatch substrates, and hard films on soft substrates. In addition to examining the load-displacement curve, the normalized hardness versus normalized indentation depth is checked as well to characterize its substrate effect. We found that the intrinsic film hardness can be acquired with indentation depths of less than 12% and 20% of their film thickness for soft films on hard substrates and for soft to hard films on no elastic mismatch substrates, respectively. Nevertheless, nanoindentation of hard films on soft substrates cannot determine the intrinsic film hardness due to the fact that a soft substrate cannot support a hard film. By examining the von Mises stresses, we discovered a significant bending phenomenon in the hard film on the soft substrate. PACS 61.43.Bn; 62.20.-x; 68.03.Hj; 68.05.Cf; 68.08.De  相似文献   

3.
Q.P. Wei  Z.M. Yu  L. Ma  J. Ye 《Applied Surface Science》2009,256(5):1322-1328
A tungsten-carbide gradient coating (WCGC) was prepared by reactive sputtering as an intermediate layer on the cemented carbide, WC-13 wt.% Co, substrate to improve the nucleation, smoothness and adhesion of diamond film. The diamond film was deposited by hot filament chemical vapor deposition (HFCVD). The effects of the substrate temperature on the WCGC and the diamond film were investigated. The characterization of the WCGC and the diamond films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), micro-Raman spectroscopy and Rockwell hardness indentation. It is found that the WCGC plays an important role in improving the nucleation, smoothness and adhesion of diamond film; and the diamond films exhibit better quality and adhesion as substrate temperature increases during the CVD processes.  相似文献   

4.
Nanoindentation was carried out on thin films of hydrogenated amorphous silicon (a-Si:H) prepared by plasma-enhanced chemical vapor deposition. The composite values of elastic (Young's) modulus, E c, and hardness, H c, of the film/substrate system were evaluated from the load–displacement curves using the Oliver–Pharr approach. The film-only parameters were obtained employing the extrapolation of the depth profiles of E c and H c. Scanning probe microscopy was employed to image the nanoindenter impressions and to estimate the effect of film roughness and material pile-up on the testing results. It was established that the elastic modulus of thin a-Si:H films is in the range 117–131 GPa, which is lower than for crystalline silicon. In contrast, the values of hardness are in the range 12.2–12.7 GPa, which is comparable to crystalline silicon and higher than for hydrogen-free amorphous silicon. It is suggested that the plastic deformation of a-Si:H proceeds through plastic flow and it is the presence of hydrogen in the amorphous matrix that leads to a higher hardness.  相似文献   

5.
A comparative study of hardness of thin films of hydrogenated amorphous silicon (a-Si:H) and hydrogen-free amorphous silicon (a-Si) was carried out to reveal the role of hydrogen in the plastic properties of amorphous silicon. In addition, the effect of hydrogen on hardness was established by changing hydrogen concentration in the material using post-deposition processing of the samples. The hydrogen concentration in a-Si:H was decreased by thermal annealing. In a-Si hydrogen was introduced by plasma hydrogenation. The values of hardness of the as-prepared a-Si and a-Si:H films were determined by nanoindentation using depth profiling. Low-depth indentation was applied to evaluate the effect of post-hydrogenation. The results obtained show that the presence of hydrogen in the amorphous silicon network leads to the increase in hardness. The conducted experiments demonstrate that plasma hydrogenation can be used as an effective tool to increase the hardness of amorphous silicon. Hardness of a-Si:H of about 12.3–12.7 GPa is as high as of crystalline silicon, suggesting a-Si:H can be a substitute for crystalline silicon in some MEMS.  相似文献   

6.
Ti-Si-N复合膜的界面相研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了揭示Ti_Si_N复合膜中Si3N4界面相的存在方式及其对薄膜力学 性能的影响 ,采用x射线衍射仪、高分辨透射电子显微镜、俄歇电子能谱仪和显微硬度仪对比研究了磁 控溅射Ti_Si_N复合膜和TiN/Si3N4多层膜的微结构和力学性能. 实 验结果表明 ,Ti_Si_N复合膜均形成了Si3N4界面相包裹TiN纳米晶粒的微结构. 其中低Si 含量的Ti_Si_N复合膜中Si3N4界面相的厚度小于1nm,且以晶体态 存在,薄膜 呈现高硬度. 而高Si含量的Ti_Si_N复合膜中的Si3N4界面相以非晶 态存在,薄 膜的硬度也相应降低. 显然,Ti_Si_N复合膜中Si3N4界面相以晶体 态形式存在 是薄膜获得高硬度的重要微结构特征,其强化机制可能与多层膜的超硬效应是相同的. 关键词: Ti-Si-N复合膜 界面相 微结构 超硬效应  相似文献   

7.
The objective of this work is to develop an experimental indentation based method to determine the fracture force at the interface of Pd thin films and SrTiO3 perovskite substrate. This paper reports on the results obtained for indentation into Pd thin films which were deposited in various thicknesses from 20 nm to 200 nm under vacuum and 300 °C substrate temperature by an electron beam physical vapor deposition. Initially, the relation between grain size, elastic module and hardness was considered as a function of film thickness. Thereafter, in developing new method, oscillating indentation was performed with different applied forces and oscillating times in order to measure the critical fracture force in each thickness. The effect of oscillating time on plastically deformed regions surrounding an indentation was schematically explained in conjunction with variation of oscillating time to determine the interfacial properties of the Pd thin film. Furthermore, the accuracy of the critical fracture force was ensured by applied force versus piling up height plot. The method is validated experimentally for the soft thin films over the hard substrate. However, further study would be essential to measure the film adhesion by means of fracture force at the interface.  相似文献   

8.
Ti-Si-N coatings with different silicon contents (0-12 at.%) were deposited onto Si(1 0 0) wafer, AISI M42 high speed steel, and stainless steel plate, respectively. These coatings were characterized and analyzed by using a variety of analytical techniques, such as XRD, AES, SEM, XPS, nanoindentation measurements, Rockwell C-type indentation tester, and scratch tester. The results revealed that the hardness was strongly correlated to the amount of silicon addition into a growing TiN film. The maximum hardness of 47.1 GPa was achieved as the Si content was 8.6 at.%. In the mechanical and oxidation resistance measurements, the Ti-Si-N coatings showed three distinct behaviors. (i) The coatings with Si contents of no more than 8.6 at.% performed good adhesion strength quality onto the HSS substrates. (ii) The fracture toughness of the coatings decreased with the increase in Si content. (iii) The Ti-Si-N coating with 8.6 at.% Si showed the excellent oxidation resistance behavior. The cutting performance under using coolant conditions was also evaluated by a conventional drilling machine. The drills with Ti-Si-N coatings performed much better than the drills with TiN coating and the uncoated drills.  相似文献   

9.
This paper presents an approach to reverse analysis in depth-sensing indentation of composite film/substrate materials, which makes use of numerical simulation. This methodology allows the results of experimental hardness tests, acquired with pyramidal indenter geometry, to be used to determine the Young's modulus of thin film materials. Forward and reverse analyses were performing using three-dimensional numerical simulations of pyramidal and flat punch indentation tests to determine the Young's modulus of the thin films. The pyramidal indenter used in the numerical simulations takes into account the presence of the most common imperfection of the tip, so-called offset. The contact friction between the Vickers indenter and the deformable body is also considered. The forward analysis uses fictitious composite materials with different relationships between the values of the Young's modulus of the film and substrate. The proposed reverse analysis procedure provides a unique value for the film's Young's modulus. Depending on material properties, the value of the Young's modulus of the film can be more or less sensitive to the scatter of the experimental results obtained using the depth-sensing equipment. The validity of the proposed reverse analysis method is checked using four real cases of composite materials.  相似文献   

10.
《Composite Interfaces》2013,20(6):507-520
The aim of this article is to provide a systematic method for performing experimental tests and theoretical evaluations on interfacial adhesion properties of the W/Al bilayer thin films interface. Samples W/Al bilayer thin films assembly is deposited on the quartz glass by using radio frequency magnetron sputtering. Based on the analysis of the experimental indentation data, the elastic modulus and hardness of the sample are investigated. The test results show that both of the values are easily influenced by the indentation depth. At the meantime, a finite element model is built to simulate the interface mechanical properties. The analysis shows that stress is mainly centralized close to the indenter and the maximum stress occurs in the lower layer Al film, not in the upper W film. The comparison between the experiment and the simulation shows the validity of the test and the modeling of each other to a certain extent. The investigation builds a basis for future work such as the fabrication of W/Al bilayer thin films for micro/nano manufacturing.  相似文献   

11.
Ti films with a thickness of 1.6 μm (group A) and 4.6 μm (group B) were prepared on surface of silicon crystal by metal vapor vacuum arc (MEVVA) ion implantation combined with ion beam assisted deposition (IBAD). Different anneal temperatures ranging from 100 to 500 °C were used to investigate effect of temperature on residual stress and mechanical properties of the Ti films. X-ray diffraction (XRD) was used to measure residual stress of the Ti films. The morphology, depth profile, roughness, nanohardness, and modulus of the Ti films were measured by scanning electron microscopy (SEM), scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindentation, respectively. The experimental results suggest that residual stress was sensitive to film thickness and anneal temperature. The critical temperatures of the sample groups A and B that residual stress changed from compressive to tensile were 404 and 428 °C, respectively. The mean surface roughness and grain size of the annealed Ti films increased with increasing anneal temperature. The values of nanohardness and modulus of the Ti films reached their maximum values near the surface, then, reached corresponding values with increasing depth of the indentation. The mechanism of stress relaxation of the Ti films is discussed in terms of re-crystallization and difference of coefficient of thermal expansion between Ti film and Si substrate.  相似文献   

12.
We present a novel method of probing adhesion energies of solids, particularly polymers. This method uses the axi-symmetric deformation of a thin spincast polymer membrane brought into contact with a flat substrate to probe the work of adhesion. The use of a thin membrane minimizes uncertainty in the radius of contact, while the use of spincast films provides very smooth surfaces by means of a very simple method. The experimental profile of the deformed membrane shows good agreement with the expected logarithmic profile. The experimental setup enables the measurement of Young's modulus and the solid-solid work of adhesion for thin films. The value obtained for Young's modulus of polystyrene (PS) was found to be in agreement with other conventional measurement techniques. In addition, measurement of the work of adhesion at the PS/silicon oxide interface was possible. The apparatus is well suited to studying the dependence of Young's modulus, work of adhesion and fracture energy on membrane thickness, temperature, pulling rate, and ageing of the interface, and can readily be modified to study biologically relevant samples.  相似文献   

13.
ZnO films with thicknesses ranging from 0.202 to 1.535?µm were deposited by using the magnetron sputtering technique on Si (100) substrates 525?µm thick. Then, Vickers indentation tests were carried out on the ZnO/Si systems at room temperature, in which the applied load varied from 10?mN to 2.0?N. The experimental results show that only indentation-induced radial cracking occurred in the systems with film thicknesses equal to and thinner than 0.554?µm, from which the residual stress in the films was extracted to be 387?MPa in compression. For the systems with film thicknesses equal to and thicker than 0.832?µm, only indentation-induced delamination occurred when indentation loads were low. Under high indentation loads, radial cracking concurrently occurred with delamination. The radial cracks were invisible at the film surfaces because the crack length was smaller than the delamination size. The critical film thickness for indentation-induced delamination was found to be around 0.7?µm for the ZnO/Si systems. Combining the composite hardness models with the indentation-induced delamination model, we developed a method to determine the interfacial fracture energy between a film and its substrate. The novel method is particularly useful for indentation equipment without any displacement measurement devices. Using the new method, we extracted the interfacial fracture energy to be about 12.2?J?m?2 and from 9.2 to 11.7?J?m?2 for the cases without and with buckling respectively of delaminated films. Consequently, the pure mode I interfacial fracture energy was calculated to be 10.4?J?m?2 for the ZnO/Si systems.  相似文献   

14.
Mechanical and tribological properties of multilayers with nanometer thickness are strongly affected by interfaces formed due to mismatch of lattice parameters. In this study, molecular dynamics (MD) simulations of nanoindentation and following nanoscratching processes are performed to investigate the mechanical and tribological properties of Ni/Al multilayers with semi-coherent interface. The results show that the indentation hardness of Ni/Al multilayers is larger than pure Ni thin film, and the significant strength of Ni/Al multilayers is caused by the semi-coherent interface which acts as a barrier to glide of dislocations during nanoindentation process. The confinement of plastic deformation by the interface during nanoscratching on Ni/Al multilayers leads to smaller friction coefficient than pure Ni thin film. Dislocation evolution, interaction between gliding dislocations and interface, variations of indentation hardness and friction coefficient are studied.  相似文献   

15.
金刚石薄膜的结构特征对薄膜附着性能的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
在不同实验条件下,用微波等离子体化学气相沉积设备在硬质合金(WC+6%Co)衬底上沉积了 具有不同结构特征的金刚石薄膜.用Raman谱表征薄膜的品质和应力,用压痕实验表征薄膜的 附着性能,考察了薄膜中sp2杂化碳含量、形核密度、薄膜厚度对薄膜附着性能 的影响.结 果表明:sp2杂化碳的缓冲作用使薄膜中sp2杂化碳的含量对薄膜中 残余应力有较大的影 响,从而使薄膜压痕开裂直径统计性地随sp2杂化碳含量的增加而减小;仅仅依 靠超声遗 留的金刚石晶籽提高形核密度并不能有效改变薄膜与硬质合金基体之间的化学结合状况,从 而不能有效提高薄膜在衬底上的附着性能;在薄膜较薄时,晶粒之间没有压应力的存在,开 裂直径并不明显随厚度增加而增加,只有当薄膜厚度增加到一定值,晶粒之间才有较强压应 力存在,开裂直径随厚度的增加而较为迅速地增加. 关键词: 金刚石薄膜 附着性能 2杂化碳')" href="#">sp2杂化碳 成核密度 薄膜厚度  相似文献   

16.
Structure and mechanical properties of reactive sputtering CrSiN films   总被引:1,自引:0,他引:1  
CrSiN films with various Si contents were deposited by reactive magnetron sputtering using the co-deposition of Cr and Si targets in the presence of the reactive gas mixture. Comparative studies on microstructure and mechanical properties between CrN and CrSiN films with various Si contents were carried out. The structure of the CrSiN films was found to change from crystalline to amorphous structure as the Si contents increase. Amorphous phase of Si3N4 compound was suggested to exist in the CrSiN film. The growth of films has been observed from continuous columnar structure, granular structure to glassy-like appearance morphology with the increase of silicon content. The film fracture changed from continuous columnar structure, granular structure to glassy-like appearance morphology with the increase of silicon content. Two hardness peaks of the films as function of Si contents have been discussed.  相似文献   

17.
The mechanical properties of thin Ag films of equal thickness containing grains of various sizes were studied. The film hardness was measured using the Oliver-Pharr techniques based on indentation work calculations or on direct measurements of the area of pyramid imprints in AFM images. In order to avoid the influence of a substrate on the measured hardness, a technique was developed to determine the true values of the film hardness. It was established that the hardness of Ag films decreases with an increase in mean grain size, whereas the elastic modulus remains almost unchanged. It was shown that the dependence of the yield stress of Ag films on grain size does not obey the classical Hall-Petch law.  相似文献   

18.
SiO2/TiO2/γ-glycidoxypropyltrimethoxysilane composite materials processed by the sol-gel technique were studied for optical waveguide applications. Waveguide films with thickness more than 1.7 μm were prepared on a silicon substrate by a single-coating process and low-temperature heat treatment from these high-titanium-content composite materials. Scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal gravimetric analysis (TGA), UV-visible spectroscopy (UV-VIS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the waveguide films. TGA curves showed that organic compounds in the composite materials would decompose in the temperature range from 200 °C to 480 °C. SEM, AFM and UV-VIS results showed that a dense, porous-free, and high transparency in the visible range waveguide film could be obtained at a low heat-treatment temperature. It was also noted that the carbon content in the film with higher titanium content heated at high temperature was evidenced by XPS. The waveguide propagation loss properties of the composite material films were also investigated and showed a dependence on the titanium molar fraction. Received: 13 June 2000 / Accepted: 21 June 2000 / Published online: 20 September 2000  相似文献   

19.
Blum  J.  Tymiak  N.  Neuman  A.  Wong  Z.  Rao  N.P.  Girshick  S.L.  Gerberich  W.W.  McMurry  P.H.  Heberlein  J.V.R. 《Journal of nanoparticle research》1999,1(1):31-42
Nanostructured silicon carbide films have been deposited on molybdenum substrates by hypersonic plasma particle deposition. In this process a thermal plasma with injected reactants (SiCl4 and CH4) is expanded through a nozzle leading to the nucleation of ultrafine particles. Particles entrained in the supersonic flow are then inertially deposited in vacuum onto a temperature-controlled substrate, leading to the formation of a consolidated film. In the experiments reported, the deposition substrate temperature Ts has ranged from 250°C to 700°C, and the effect of Ts on film morphology, composition, and mechanical properties has been studied. Examination of the films by scanning electron microscopy has shown that the grain sizes in the films did not vary significantly with Ts. Micro-X-ray diffraction analysis of the deposits has shown that amorphous films are deposited at low Ts, while crystalline films are formed at high Ts. Rutherford backscattering spectrometry has indicated that the films are largely stoichiometric silicon carbide with small amounts of chlorine. The chlorine content decreases from 8% to 1.5% when the deposition temperature is raised from 450°C to 700°C. Nanoindentation and microindentation tests have been performed on as-deposited films to measure hardness, Young's modulus and to evaluate adhesion strength. The tests show that film adhesion, hardness and Young's modulus increase with increasing Ts. These results taken together demonstrate that in HPPD, as in vapor deposition processes, the substrate temperature may be used to control film properties, and that better quality films are obtained at higher substrate temperatures, i.e. Ts700°C.  相似文献   

20.
李龙  王鸣  倪海彬  沈添怿 《物理学报》2014,63(5):54206-054206
采用溶胶凝胶协同自组装与光刻相结合的方法,在光子晶体反蛋白石结构中引入缺陷,通过溶胶凝胶协同自组装方法在硅片上垂直沉积胶体晶体复合薄膜,把BP212正性光刻胶均匀旋涂在复合薄膜上,通过曝光、显影等光刻工艺,把掩膜版图案复制在复合薄膜上,用此样品再次垂直沉积一层复合薄膜,使图案被复合薄膜覆盖.最后去除胶体微球与光刻胶图案,从而在反蛋白石结构中引入缺陷,用扫描电子显微镜对样品进行表征.分析了光刻胶图案对胶体微球排列的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号