首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Indentation fracture and indentation delamination in ZnO film/Si substrate systems
Authors:Bin Huang  Ming-Hao Zhao  Tong-Yi Zhang
Institution:Department of Mechanical Engineering , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, PR China
Abstract:ZnO films with thicknesses ranging from 0.202 to 1.535?µm were deposited by using the magnetron sputtering technique on Si (100) substrates 525?µm thick. Then, Vickers indentation tests were carried out on the ZnO/Si systems at room temperature, in which the applied load varied from 10?mN to 2.0?N. The experimental results show that only indentation-induced radial cracking occurred in the systems with film thicknesses equal to and thinner than 0.554?µm, from which the residual stress in the films was extracted to be 387?MPa in compression. For the systems with film thicknesses equal to and thicker than 0.832?µm, only indentation-induced delamination occurred when indentation loads were low. Under high indentation loads, radial cracking concurrently occurred with delamination. The radial cracks were invisible at the film surfaces because the crack length was smaller than the delamination size. The critical film thickness for indentation-induced delamination was found to be around 0.7?µm for the ZnO/Si systems. Combining the composite hardness models with the indentation-induced delamination model, we developed a method to determine the interfacial fracture energy between a film and its substrate. The novel method is particularly useful for indentation equipment without any displacement measurement devices. Using the new method, we extracted the interfacial fracture energy to be about 12.2?J?m?2 and from 9.2 to 11.7?J?m?2 for the cases without and with buckling respectively of delaminated films. Consequently, the pure mode I interfacial fracture energy was calculated to be 10.4?J?m?2 for the ZnO/Si systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号