首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
Following photodissociation of fluorobenzene (C(6)H(5)F) at 193 nm, rotationally resolved emission spectra of HF(1相似文献   

2.
Following collisions of O (1D) with CO, rotationally resolved emission spectra of CO (1 < or = v < or = 6) in the spectral region 1800-2350 cm(-1) were detected with a step-scan Fourier transform spectrometer. O (1D) was produced by photolysis of O3 with light from a KrF excimer laser at 248 nm. Upon irradiation of a flowing mixture of O3 (0.016 Torr) and CO (0.058 Torr), emission of CO (v < or = 6) increases with time, reaches a maximum approximately 10 micros. At the earliest applicable period (2-3 micros), the rotational distribution of CO is not Boltzmann; it may be approximately described with a bimodal distribution corresponding to temperatures approximately 8000 and approximately 500 K, with the proportion of these two components varying with the vibrational level. A short extrapolation from data in the period 2-6 micros leads to a nascent rotational temperature of approximately 10170 +/- 600 K for v = 1 and approximately 1400 +/- 40 K for v = 6, with an average rotational energy of 33 +/- 6 kJ mol(-1). Absorption by CO (v = 0) in the system interfered with population of low J levels of CO (v = 1). The observed vibrational distribution of (v = 2):(v = 3):(v = 4):(v = 5):(v = 6) = 1.00:0.64:0.51:0.32:0.16 corresponds to a vibrational temperature of 6850 +/- 750 K. An average vibrational energy of 40 +/- 4 kJ mol(-1) is derived based on the observed population of CO (2 < or = v < or = 6) and estimates of the population of CO (v = 0, 1, and 7) by extrapolation. The observed rotational distributions of CO (1 < or = v < or = 3) are consistent with results of previous experiments and trajectory calculations; data for CO (4 < or = v < or = 6) are new.  相似文献   

3.
Rotationally resolved infrared emission spectra of HCl(v=1-3) in the reaction of Cl+CH3SH, initiated with radiation from a laser at 308 nm, are detected with a step-scan Fourier-transform spectrometer. Observed rotational temperature of HCl(v=1-3) decreases with duration of reaction due to collisional quenching; a short extrapolation to time zero based on data in the range 0.25-4.25 micros yields a nascent rotational temperature of 1150+/-80 K. The rotational energy averaged for HCl(v=1-3) is 8.2+/-0.9 kJ mol(-1), yielding a fraction of available energy going into rotation of HCl, fr=0.10+/-0.01, nearly identical to that of the reaction Cl+H(2)S. Observed temporal profiles of the vibrational population of HCl(v=1-3) are fitted with a kinetic model of formation and quenching of HCl(v=1-3) to yield a branching ratio (68+/-5):(25+/-4):(7+/-1) for formation of HCl(v=1):(v=2):(v=3) from the title reaction and its thermal rate coefficient k(2a)=(2.9+/-0.7)x10(-10) cm(3) molecule(-1) s(-1). Considering possible estimates of the vibrational population of HCl(v=0) based on various surprisal analyses, we report an average vibrational energy 36+/-6 kJ mol(-1) for HCl. The fraction of available energy going into vibration of HCl is f(v)=0.45+/-0.08, significantly greater than a value fv=0.33+/-0.06 determined previously for Cl+H2S. Reaction dynamics of Cl+H(2)S and Cl+CH3SH are compared; the adduct CH3S(Cl)H is likely more transitory than the adduct H(2)SCl.  相似文献   

4.
Upon photolysis of oxalyl chloride at 193 nm, time-resolved and rotationally resolved emission of CO(v相似文献   

5.
Photodissociation dynamics of phenol   总被引:1,自引:0,他引:1  
The photodissociation of phenol at 193 and 248 nm was studied using multimass ion-imaging techniques and step-scan time-resolved Fourier-transform spectroscopy. The major dissociation channels at 193 nm include cleavage of the OH bond, elimination of CO, and elimination of H(2)O. Only the former two channels are observed at 248 nm. The translational energy distribution shows that H-atom elimination occurs in both the electronically excited and ground states, but elimination of CO or H(2)O occurs in the electronic ground state. Rotationally resolved emission spectra of CO (1 相似文献   

6.
The reaction pathway for Ca(4s3d 1D2)+CH4-->CaH(X 2Sigma+)+CH3 has been investigated by using a pump-probe technique in combination with potential-energy surface (PES) calculations. The nascent product distributions of CaH have been characterized with Boltzmann rotational temperatures of 1013+/-102 and 834+/-70 K for the v=0 and 1 levels, respectively, and a Boltzmann vibrational temperature of 1313+/-173 K. The rotational and vibrational energy partitions in CaH have been estimated to be 461+/-45 and 252+/-15 cm(-1), respectively. According to the PES calculations, the pathway favors an insertion mechanism. Ca(3 1D2) approaches CH4 along an attractive potential surface in a C2v (or Cs) symmetry and then the collision complex undergoes nonadiabatic transition to the reactive ground-state surface. An Arrhenius plot shows a potential-energy requirement of 2695+/-149 cm(-1), which accounts for the endothermicity of 2930 cm(-1) for the reaction scheme. The Ca-C bond distance in the transition state structure is short enough to allow for tight orbital overlap between CaH and CH3. The strong coupling between the moieties renders the energy transfer sufficient from CaH into the CH3 radical. As compared to the Ca(4 1P1) reaction, the dissociation lifetime of the intermediate complex with less excess energy is prolonged so as to cause much less vibrational energy disposal into CaH.  相似文献   

7.
The dynamics of photodissociation of acetoxime at 193 nm, leading to the formation of (CH3)2C=N and OH fragments, has been investigated. The nascent OH radicals, which are both rotationally and vibrationally excited, were probed by laser photolysis-laser induced fluorescence technique. OH fragments in both v" = 1 and v" = 0 vibrational states were detected with a ratio of population in the higher to lower level of 0.07+/-0.01. The rotational temperatures of v" = 0 and 1 levels of OH radicals are 2650+/-150 K and 1290+/-20 K, respectively. More than 30% of the available energy, i.e., 115+/-21 kJ mol(-1) is partitioned into the relative translational energy of the fragments. The results of excited electronic state and transition state calculations at the configuration interaction with single electronic excitation level suggest that the dissociation takes place with an exit barrier of approximately 126 kJ mol(-1) at the triplet state (T2) potential energy surface, formed by internal conversions/intersystem crossing from the initially populated S2 state. Using the calculated transition state geometry and its energy, the observed energy distribution pattern can be reproduced by the hybrid model within experimental uncertainties. The presence of an exit barrier is further supported by the observation of N-OH dissociation upon 248 nm excitation, where the relative translational energy of the fragments is found to be approximately 96 kJ mol(-1). The photodissociation dynamics of acetoxime is compared with C-OH dissociation in enols and carboxylic acid and N-OH dissociation in nitrous acid. The observed emission (lambda(max)=430 nm) and the N-OH dissociation dynamics indicate crossing of the initially populated state to an emissive state of acetoxime, which is different from the dissociative state.  相似文献   

8.
利用分子束装置研究了F与CH~3F反应可见光范围(450-900nm)的化学发光.观察到HCF(A~1A"-X2A')的七个振动带和HF^+电子基态振动广频跃迁的四个振动带和它们的强度随反应物流量的变化.求得HF分子的V'=4,5,6能级相对振动布居和V'=3的转动温度.分析表明两种光谱都是第二步反应(F+CH~2F)引起的,这步反应造成了HF高振动能级的统计性粒子分布和转动能级的玻尔兹曼分布.  相似文献   

9.
High-resolution infrared laser spectroscopy is used to study the CH3...HF and CD3...HF radical complexes, corresponding to the exit-channel complex in the F + CH4 --> HF + CH3 reaction. The complexes are formed in helium nanodroplets by sequential pickup of a methyl radical and a HF molecule. The rotationally resolved spectra presented here correspond to the fundamental v = 1 <-- 0 H-F vibrational band, the analysis of which reveals a complex with C(3v) symmetry. The vibrational band origin for the CH3...HF complex (3797.00 cm(-1)) is significantly redshifted from that of the HF monomer (3959.19 cm(-1)), consistent with the hydrogen-bonded structure predicted by theory [E. Ya. Misochko et al., J. Am. Chem. Soc. 117, 11997 (1995)] and suggested by previous matrix isolation experiments [M. E. Jacox, Chem. Phys. 42, 133 (1979)]. The permanent electric dipole moment of this complex is experimentally determined by Stark spectroscopy to be 2.4+/-0.3 D. The wide amplitude zero-point bending motion of this complex is revealed by the vibrational dependence of the A rotational constant. A sixfold reduction in the line broadening associated with the H-F vibrational mode is observed in going from CH3...HF to CD3...HF. The results suggest that fast relaxation in the former case results from near-resonant intermolecular vibration-vibration (V-V) energy transfer. Ab initio calculations are also reported (at the MP2 level) for the various stationary points on the F + CH4 surface, including geometry optimizations and vibrational frequency calculations for CH3...HF.  相似文献   

10.
The reactivity of CH(4) impinging on a Pt(111) surface was examined using a precursor-mediated microcanonical trapping model of dissociative chemisorption wherein the effects of rotational and vibrational energy could be explored. Dissociative sticking coefficients for a diverse range of non-equilibrium effusive beam, supersonic beam, and eigenstate-resolved experiments were simulated and an average relative discrepancy between theory and experiment of better than 50% was achieved by treating molecular rotations and translation parallel to the surface as spectator degrees of freedom, and introducing a dynamically-biased vibrational efficacy. The model parameters are {E(0) = 57.9 kJ mol(-1), s = 2, η(v) = 0.40} where E(0) is the apparent threshold energy for reaction, s is the number of surface oscillators participating in energy exchange within each gas-surface collision complex formed, and η(v) is the mean vibrational efficacy for reaction relative to normal translational energy which figures in the assembly of the active exchangeable energy which is available to surmount the activation barrier to dissociative chemisorption. GGA-DFT electronic structure calculations provided vibrational frequencies for the transition state for dissociative chemisorption. The asymmetry of the rotational state populations in supersonic and effusive molecular beam experiments allowed kinetic analysis to establish that taking rotation as a spectator degree of freedom is a good approximation. Surface phonons, rather than the incident molecules, are calculated to play the dominant role in supplying the energy required to overcome the activation barrier for dissociative chemisorption under the thermal equilibrium conditions relevant to high pressure catalysis. Over the temperature range 300 K ≤T≤ 1000 K, the thermal dissociative sticking coefficient is predicted to be well described by S(T) = S(0) exp(-E(a)/RT) where S(0) = 0.62 and E(a) = 62.6 kJ mol(-1).  相似文献   

11.
Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.  相似文献   

12.
The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).  相似文献   

13.
Infrared predissociation (IRPD) spectra of Li(+)(CH(4))(1)Ar(n), n = 1-6, clusters are reported in the C-H stretching region from 2800 to 3100 cm(-1). The Li(+) electric field perturbs CH(4) lifting its tetrahedral symmetry and gives rise to multiple IR active modes. The observed bands arise from the totally symmetric vibrational mode, v(1), and the triple degenerate vibrational mode, v(3). Each band is shifted to lower frequency relative to the unperturbed CH(4) values. As the number of argon atoms is increased, the C-H red shift becomes less pronounced until the bands are essentially unchanged from n = 5 to n = 6. For n = 6, additional vibrational features were observed which suggested the presence of an additional conformer. By monitoring different photodissociation loss channels (loss of three Ar or loss of CH(4)), one conformer was uniquely associated with the CH(4) loss channel, with two bands at 2914 and 3017 cm(-1), values nearly identical to the neutral CH(4) gas-phase v(1) and v(3) frequencies. With supporting ab initio calculations, the two conformers were identified, both with a first solvent shell size of six. The major conformer had CH(4) in the first shell, while the conformer exclusively present in the CH(4) loss channel had six argons in the first shell and CH(4) in the second shell. This conformer is +11.89 kJ/mol higher in energy than the minimum energy conformer at the MP2/aug-cc-pVDZ level. B3LYP/6-31+G* level vibrational frequencies and MP2/aug-cc-pVDZ level single-point binding energies, D(e) (kJ/mol), are reported to support the interpretation of the experimental data.  相似文献   

14.
Guided ion beam tandem mass spectrometry techniques are used to examine the competing product channels in the reaction of Cl(-) with CH(3)F in the center-of-mass collision energy range 0.05-27 eV. Four anionic reaction products are detected: F(-), CH(2)Cl(-), FCl(-), and CHCl(-). The endothermic S(N)2 reaction Cl(-) + CH(3)F --> CH(3)Cl + F(-) has an energy threshold of E(0) = 181 +/- 14 kJ/mol, exhibiting a 52 +/- 16 kJ/mol effective barrier in excess of the reaction endothermicity. The potential energy of the S(N)2 transition state is well below the energy of the products. Dynamical impedances to the activation of the S(N)2 reaction are discussed, including angular momentum constraints, orientational effects, and the inefficiency of translational energy in promoting the reaction. The fluorine abstraction reaction to form CH(3) + FCl(-) exhibits a 146 +/- 33 kJ/mol effective barrier above the reaction endothermicity. Direct proton transfer to form HCl is highly inefficient, but HF elimination is observed above 268 +/- 95 kJ/mol. Potential energy surfaces for the reactions are calculated using the CCSD(T)/aug-cc-pVDZ and HF/6-31+G(d) methods and used to interpret the dynamics.  相似文献   

15.
A series of time-resolved IR-IR double-resonance experiments have been conducted where methane molecules are excited into a selected rovibrational level of the 2nu3(F2) vibrational substate of the tetradecad and where the time evolution of the population of the various energy levels is probed by a tunable continuous wave laser. The rotational relaxation and vibrational energy transfer processes occurring in methane upon inelastic CH4-H2 and CH4-He collisions have been investigated by this technique at room temperature and at 193 K. By probing transitions in which either the lower or the upper level is the laser-excited level, rotational depopulation rates in the 2nu3(F2) substate were measured. The rate constants for CH4-H2 collisions were found to be 17.7 +/- 2.0 and 18.9 +/- 2.0 micros(-1) Torr(-1) at 296 and 193 K, respectively, and for CH(4)-He collisions they are 12.1 +/- 1.5 and 16.0 +/- 2.0 micros(-1) Torr(-1) at the same temperatures. The vibrational relaxation was investigated by probing other stretching transitions such as 2nu3(F2) - nu3, nu3 + 2nu4 - 2nu4, and nu3 + nu4 - nu4. A kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), that has been developed to describe the various relaxation pathways allowed us to calculate the temporal evolution of populations in these levels and to simulate double-resonance signals. The different rate coefficients of the vibrational relaxation processes involved in these mixtures were determined by fitting simulated signals to the observed signals corresponding to assigned transitions. For vibration to translation energy transfer processes, hydrogen is a much more efficient collision partner than helium, nitrogen, or methane itself at 193 K as well as at room temperature.  相似文献   

16.
Dissociative photoionization mass spectrometry has been used to measure appearance energies for the 1-hydroxyethyl cation (CH(3)CH=OH(+)) formed from ethanol and 2-propanol. Molecular orbital calculations for these two unimolecular fragmentation reactions suggest that only methyl loss from ionized 2-propanol does not involve excess energy at the threshold. The experimental appearance energy of 10.31 +/- 0.01 eV for this latter process results in a 298 K heat of formation of 593.1 +/- 1.2 kJ mol(-1) for CH(3)CH=OH(+) and a corresponding absolute proton affinity for acetaldehyde of 770.9 +/- 1.3 kJ mol(-1). This value is supported by both high-level ab initio calculations and a proposed upward revision of the absolute isobutene proton affinity to 803.3 +/- 0.9 kJ mol(-1). A 298 K heat of formation of 52.2 +/- 1.9 kJ mol(-1) is derived for the tert-butyl radical.  相似文献   

17.
Vibrational relaxation in methane-oxygen mixtures has been investigated by means of a time-resolved pump-probe technique. Methane molecules are excited into selected rotational levels by tuning the pump laser to 2nu3 lines. The time evolution in population of various vibrational levels after the pumping pulse is monitored by probing, near 3000 cm-1, stretching transitions between various polyads like 2nu3(F2) - nu3, (nu3+2nu4) - 2nu4, and (nu3+nu4) - nu4 transitions. Measurements were performed from room temperature down to 190 K. A numerical kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), has been developed to describe the vibrational relaxation. The model allows us to reproduce the observed signals and to determine rate coefficients of relaxation processes occurring upon CH4-O2 collisions. For the vibrational energy exchange, the rate coefficient of transfer from O2 (v = 1) to CH4 is found equal to (1.32 +/- 0.09) x 10(-12) cm3 molecule-1 s(-1) at 296 K and to (1.50 +/- 0.08) x 10(-12) cm3 molecule(-1) s(-1) at 193 K.  相似文献   

18.
Photoionization mass spectrometry has been used to measure appearance energies for immonium cation formation from 25 alkyl amine precursors. A number of the unimolecular fragmentation processes are shown to involve excess energy at threshold so that, of the 11 different cations investigated, it is only possible to derive reliable 298 K heats of formation for CH2=NH2+ (749.0 +/- 0.9 kJ mol(-1)), CH(3)CH=NH2+ (666.1 +/- 1.1 kJ mol(-1)), C(2)H(5)CH=NH2+ (636.8 +/- 2.5 kJ mol(-1)), CH2=NH(CH3)+ (706.1 +/- 1.0 kJ mol(-1)), CH2=NH(C(2)H(5))+ (668.4 +/- 1.3 kJ mol(-1)), and CH2=N(CH3)2+ (668.0 +/- 2.5 kJ mol(-1)). When these are compared to those calculated by the G3, G3B3, G2, G2(MP2), CBS-APNO, and W1U composite ab initio methods, it is found that the smallest mean absolute deviation of 1.2 +/- 0.8 kJ mol(-1) is obtained from the G2 calculations.  相似文献   

19.
Single crystal X-ray diffraction studies of [Mn(OS(CH3)2)6](ClO4)2 have shown that the low temperature phase transition, detected by differential scanning calorimetry (DSC) at about 223 K, is associated with the crystal symmetry's reduction from an orthorhombic crystallographic system (Fdd2, No. 43) to a monoclinic one (Cc, No. 9). The analysis of the full width at half maximum of the bands connected with: δd(OClO)F2 and ρ(CH3) vibrational modes in the FT-IR and FT-RS spectra, respectively, registered in the function of temperature, proved that the reorientational motions of ClO4- anions and CH3 groups from (CH3)2SO ligands, began to slow down at temperatures below the phase transition at about 223K. Mean values of activation energy for ClO4- reorientation in the high temperature phase I and low temperature phase II are: Ea(I)≈14 kJ mol(-1) and Ea(II)≈10 kJ mol(-1), respectively. Analogous values for CH3 reorientation are: Ea(I)≈23 kJ mol(-1) and Ea(II)≈1 kJ mol(-1), respectively.  相似文献   

20.
The C(2)H + O((3)P) --> CH(A) + CO reaction is investigated using Fourier transform visible emission spectroscopy. The O((3)P) and C(2)H radicals are produced by simultaneous 193 nm photolysis of SO(2) and C(2)H(2) precursors, respectively. The nascent vibrational and rotational distributions of the CH(A) product are obtained under time-resolved, but quasi-steady-state, conditions facilitated by the short lifetime of the CH(A) emission. The vibrational temperature of the CH(A) product is found to be appreciably hotter (2800 +/- 100 K) than the rotational distributions in the v' = 0 (1400 +/- 100 K) and v' = 1 (1250 +/- 250 K) levels. The results suggest that the reaction may proceed through an electronically excited HCCO() intermediate; moreover, the vibrational excitation compared to rotational excitation is higher than expected based on a statistical distribution of energy and may be the result of geometrical changes in the transition state. The CH(A) emission is also observed in a C(2)H(2)/O/H reaction mixture using a microwave discharge apparatus to form O atoms, with subsequent H atom production. The nascent rotational and vibrational distributions of the CH(A) determined by the microwave discharge apparatus are very similar to the CH(A) distributions obtained in the photodissociation experiment. The results support the idea that the C(2)H + O((3)P) reaction may play a role in low-pressure C(2)H(2)/O/H flames, as previously concluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号