首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline ZnO thin films were grown by means of pulsed laser deposition. The ablation process was carried out at relatively low background oxygen gas pressure (10 Pa) and by varying the substrate temperature up to 600 °C. Information on the structural and morphological properties of the deposited thin films have been obtained by means of X-ray photoelectron, Raman spectroscopies, X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed that all the deposited films are sub-stoichiometric in oxygen and with a hexagonal wurtzite crystalline structure, characterized by features of some tens of nanometers in size. An improvement of the films' crystalline quality was observed for the deposition temperature of 300 °C while the further increase of the deposition temperature up to 600 °C induces a worsening of the material's structural properties with the development of a large amount of nanoparticle's clusters. The analysis of the XRD patterns shows a growth crystallographic preferential direction as a function of the deposition temperature, in agreement with the appearance of the only E2 optical phonon mode in the Raman spectra. Such findings are compatible with the changes observed in the photoluminescent (PL) optical response and was related to the modification of the ZnO thin film structural quality.  相似文献   

2.
Effect of temperature on pulsed laser deposition of ZnO films   总被引:1,自引:0,他引:1  
M. Liu 《Applied Surface Science》2006,252(12):4321-4326
ZnO thin films have been deposited on Si(1 1 1) substrates at different substrate temperature by pulsed laser deposition (PLD) of ZnO target in oxygen atmosphere. An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the deposition temperature on the thickness, crystallinity, surface morphology and optical properties of ZnO films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), photoluminescence (PL) spectrum and infrared spectrum. The results show that in our experimental conditions, the ZnO thin films deposited at 400 °C have the best surface morphology and crystalline quality. And the PL spectrum with the strongest ultraviolet (UV) peak and blue peak is observed in this condition.  相似文献   

3.
The pulsed laser deposition (PLD) technique is used to deposit undoped ZnO thin films on glass substrates at 150 °C with different oxygen pressures of 40, 80, 100 and 150 mTorr. X-ray diffraction (XRD) and atomic force microscopy (AFM) studies indicated that the obtained ZnO thin films were hexagonal wurtzite-type structures with strong (0 0 2) c-axis orientation. The relationship between photoluminescence and the conductivity of the ZnO thin films grown by pulsed laser deposition at various oxygen pressures was also discussed. The intensity of the deep-level-emission (DLE) and conductivity generally increased as the oxygen pressure decreased. The intensity of DLE peak was generally proportional to the conductivity. The band gap energy values, determined from transmittance spectra, were around 3.30-3.34 eV, and decreased when the oxygen pressure increased.  相似文献   

4.
《Current Applied Physics》2010,10(2):693-697
ZnO thin films were deposited at room temperature by pulsed laser deposition (PLD) varying the oxygen pressure. Morphological analysis using scanning electron microscope (SEM) and atomic force microscopy (AFM) demonstrated the formation of ZnO nanorods at a particular oxygen pressure. Room temperature violet luminescence was observed from these ZnO nanorods and temperature dependence of luminescence was studied. Influence of oxygen pressure on the growth of ZnO thin films by PLD was studied using the X-ray photoelectron spectroscopy of both post ablated targets and deposited films. The ZnO films were crystalline and the formation of crystalline phase is found to follow a pressure–temperature (PT) scaling with increase of temperature.  相似文献   

5.
We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al2O3), under substrate temperatures around 400 °C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature.  相似文献   

6.
GaN thin films were deposited on sapphire (0001) substrates at different nitrogen pressures by pulsed laser deposition (PLD) of GaN target in nitrogen atmosphere. Good single crystal GaN thin films were obtained after annealing at 1000 °C for 15 min in a NH3 atmosphere. An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influence of nitrogen pressure on the thickness, crystallinity and surface morphology of GaN films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. The results show that at low nitrogen pressure, the surface diffusion of adatoms can be influenced by the collisions between the nitrogen gas molecules and the activated atoms, which can influence the kinetic energy of the activated atoms. However, at high nitrogen pressure, the kinetic energy of adatoms is decided by the annealing temperature. In our experimental conditions, the GaN thin films deposited at 0.75 and 7.5 Pa have a high surface morphology and crystalline quality. PACS 71.55.Eq; 74.62.Fj  相似文献   

7.
Two kinds of cadmium sulfate (CdS) thin films have been grown at 600 °C onto Si(111) and quartz substrates using femtosecond pulsed laser deposition (PLD). The influence of substrates on the structural and optical properties of the CdS thin films grown by femtosecond pulsed laser deposition have been studied. The CdS thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), photoluminescence (PL) and Raman spectroscopy. Although CdS thin films deposited both on Si(111) and quartz substrates were polycrystalline and hexagonal as shown by the XRD , SEM and AFM results, the crystalline quality and optical properties were found to be different. The size of the grains for the CdS thin film grown on Si(111) substrate were observed to be larger than that of the CdS thin film grown on quartz substrate, and there is more microcrystalline perpendicularity of c-axis for the film deposited on the quartz substrate than that for the films deposited on the Si substrate. In addition, in the PL spectra, the excitonic peak is more intense and resolved for CdS film deposited on quartz than that for the CdS film deposited on Si(111) substrate. The LO and TO Raman peaks in the CdS films grown on Si(111) substrate and quartz substrate are different, which is due to higher stress and bigger grain size in the CdS film grown on Si(111) substrate, than that of the CdS film grown on the amorphous quartz substrate. All this suggests that the substrates have a significant effect on the structural and optical properties of thin CdS films. PACS 81.15.Fg; 81.05.Ea; 78.20.-e; 78.67.-n; 42.62.-b  相似文献   

8.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

9.
We report characterization of ZnO thin-film transistors (TFTs) on glass substrates fabricated by pulsed laser deposition (PLD). ZnO films were characterized by X-ray diffraction (XRD), atomic force microscopy and Hall effect measurements. The XRD results showed high c-axis-oriented ZnO(0002) diffraction corresponding to the wurtzite phase. Moreover, the crystallization and the electrical properties of ZnO thin films grown at room temperature are controllable by PLD growth conditions such as oxygen gas pressure. The ZnO films are very smooth, with a root-mean-square roughness of 1 nm. From the Hall effect measurements, we have succeeded in fabricating ZnO films on glass substrates with an electron mobility of 21.7 cm2/V s. By using the ZnO thin film grown by two-step PLD and a HfO2 high-k gate insulator, a transconductance of 24.1 mS/mm, a drain current on/off ratio of 4.4×106 and a subthreshold gate swing of 0.26 V/decade were obtained for the ZnO TFT.  相似文献   

10.
碳化硅薄膜脉冲激光晶化特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
于威  何杰  孙运涛  朱海丰  韩理  傅广生 《物理学报》2004,53(6):1930-1934
采用XeCl准分子激光对非晶碳化硅(a-SiC)薄膜的脉冲激光晶化特性进行了研究.通过原子力显微镜(AFM)和Raman光谱技术对退火前后薄膜样品的形貌、结构及物相特性进行了分析.结果表明,选用合适的激光能量采用激光退火技术能够实现a-SiC薄膜的纳米晶化.退火薄膜中的纳米颗粒大小随着激光能量密度的增加而增大;Raman谱分析结果显示了退火后的薄膜的晶态结构特性并给出了伴随退火过程存在的物相分凝现象.根据以上结果并结合激光退火特性,对a-SiC的脉冲激光晶化机理进行了讨论. 关键词: 激光退火 晶化 碳化硅  相似文献   

11.
Yttrium oxide thin films were deposited on Si (1 1 1) and quartz substrates by pulsed laser deposition technique at different substrate temperature and oxygen partial pressure. XRD analysis shows that crystallite size of the yttrium oxide thin films increases as the substrate temperature increases from 300 to 873 K. However the films deposited at constant substrate temperature with variable oxygen partial pressure show opposite effect on the crystallite size. Band gap energies determined from UV-visible spectroscopy indicated higher values than that of the reported bulk value.  相似文献   

12.
One of the most important and promising materials from metal oxides is ZnO with specific properties for near UV emission and absorption optical devices. The properties of ZnO thin films strongly depend on the deposition method. Among them, pulsed laser deposition (PLD) plays an important role for preparing various kinds of ZnO films, e.g. doped, undoped, monocrystalline, and polycrystalline. Different approaches — ablation of sintered ZnO pellets or pure metallic Zn as target material are described. This contribution is comparing properties of ZnO thin films deposited from pure Zn target in oxygen atmosphere and those deposited from sintered ZnO target. There is a close connection between final thin film properties and PLD conditions. The surface properties of differently grown ZnO thin films are measured by secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, different approaches — ablation of sintered ZnO pellet or pure metallic Zn as target materials are described. The main results characterize typical properties of ZnO films versus technological parameters are presented. Presented at 5-th International Conference Solid State Surfaces and Interfaces, November 19–24, 2006, Smolenice Castle, Slovakia  相似文献   

13.
The high exciton binding energy and band gap energy of ZnO thin films open the prospect of fabricating semiconductor lasers in the ultraviolet spectral range. A prerequisite for laser diode fabrication is highly p-doped ZnO which was not reproducibly obtained up to now. Without intentional doping ZnO exhibits n-type conduction. ZnO thin films have been obtained by radio-frequency assisted pulsed laser deposition. A metallic Zn target was used for ablation in an oxygen and nitrogen RF discharge. The electrical and morphological properties of the films grown on Si were studied by Atomic Force Microscopy (AFM), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), optical absorption and Hall Effect measurements for different ratios between the nitrogen and oxygen content. The AFM images of the as-grown ZnO films reveal high quality surfaces with low values for the surface roughness and a sharp distribution of grains sizes as an effect of the RF discharge. The XRD patterns for all samples exhibit only (002) and (004) peaks indicating that the c-axis is always oriented normal to the substrate surface. The films present p-type conductivity with different carrier concentration and mobility depending on the nitrogen/oxygen ratio.  相似文献   

14.
Well crystallized and homogeneous LiFePO4/C (LFPO) thin films have been grown by pulsed laser deposition (PLD). The targets were prepared by the sol-gel process at 600 °C. The structure of the polycrystalline powders was analyzed with X-ray powder diffraction (XRD) data. The XRD patterns were indexed having a single phase olivine structure (Pnma). LFPO thin films have been deposited on three different substrates: aluminum (Al), stainless steel (SS) and silicon (Si) by pulsed laser deposition (PLD). The structure of the films was analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). It is found that the crystallinity of the thin films depends on the substrate temperature which was set at 500 °C. When annealed treatments were used, secondary phases were found, so, one step depositions at 500 °C were made.Stainless steel is demonstrated to be the best choice to act as substrate for phosphate deposition. LiFePO4 thin films grown on stainless steel plates exhibited the presence of carbon, inducing a slight conductivity enhancement that makes these films promising candidates as one step produced cathodes in Li-ion microbatteries.  相似文献   

15.
不同衬底温度下PLD法制备的氧化锌薄膜的特性   总被引:1,自引:1,他引:0  
利用GCR-170型脉冲激光器Nd:YAG的三次谐波(355nm),以蓝宝石Al2O3(0001)为衬底,在不同温度下采用脉冲激光沉积法制备了ZnO薄膜.通过原子力显微镜、Raman谱、光致发光谱、红外透射谱、霍尔效应和表面粗糙度分析仪对制备的ZnO薄膜进行了测试.分析了在不同衬底温度下薄膜的表面形貌、光学特性,同时进行了薄膜结构和厚度的测试.研究表明:衬底温度对ZnO薄膜的表面形貌、光学特性、结构特性都是重要的工艺参量,尤其在500℃时沉积的ZnO薄膜致密均匀,并表现出较强的紫外发射峰.  相似文献   

16.
采用脉冲激光沉积(PLD)技术,在Si(100)衬底上制备出高度c轴取向的ZnO薄膜。通过X射线衍射(XRD)谱,扫描电镜(SEM)和室温光致发光(PL)光谱的测量,研究了生长气氛压强的改变对薄膜结构和光致发光的影响。实验结果表明,当氧压从10Pa升高到100Pa时ZnO(002)衍射峰的半峰全宽(FWHM)增大。可以认为这是由于较高的氧压下,到达衬底表面的离子动能减小。这样部分离子没有足够的能量迁移到生长较快的(002)面,c轴取向变差,导致(002)衍射峰的强度降低,半峰全宽增大。随着氧压增大,紫外发光强度增强。这可能是氧压变大,薄膜的化学配比升高,说明化学配比对UV发光的影响要大于薄膜微结构的影响。改变氧气压强对薄膜的表面形貌也有较大的影响。  相似文献   

17.
ZnO thin films were first prepared on Si(111) substrates using a radio frequency magnetron sputtering system. Then the as-grown ZnO films were annealed in oxygen ambient at temperatures of 700, 800, 900, and 1000°C , respectively. The morphologies of ZnO films were studied by an atom force microscope (AFM). Subsequently, GaN epilayers about 500 nm thick were deposited on the ZnO buffer layers. The GaN/ZnO films were annealed in NH3 ambient at 900°C. The microstructure, morphology and optical properties of GaN films were studied by x-ray diffraction (XRD), AFM, scanning electron microscopy (SEM) and photoluminescence (PL). The results are shown, their properties having been investigated particularly as a function of the ZnO layers. For better growth of the GaN films, the optimal annealing temperature of the ZnO buffer layers was 900°C.  相似文献   

18.
The transparent thin films of undoped, Mn-doped, and Ni-doped zinc oxide (ZnO) have been deposited on glass substrates via sol-gel technique using zinc acetate dehydrate, nickel chloride, and manganese chloride as precursors. The structural properties and morphologies of the deposited undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/vis spectroscopy. The analyzed results indicate that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn or Ni related phases. The band gap energy was estimated by Tauc's method and found to be 3.28, 3.26, and 3.34 eV for ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films at room temperature, respectively. Room temperature photoluminescence is observed for the ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films.  相似文献   

19.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

20.
Aluminum-doped zinc oxide (AZO) thin films have been deposited on amorphous fused silica substrates by pulsed laser ablation of a Zn:Al metallic targets. We varied the film growth condition such as the substrate temperature and Al concentrations. The films were deposited at substrate temperatures ranging from 20 to 600°C with oxygen partial pressure of 1 torr. The characteristics of the deposited films were examined by analyzing their photoluminescence (PL), X-ray diffraction (XRD), and UV–visible spectra. It is observed that the optical bandgap energy of the deposited films increased with the increase of Al concentration and substrate temperature. Besides, the PL peak energy shifted to blue and the Stokes shift became larger as the Al content increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号