首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The forces and particle motion during transient and oscillatory shear of granular material are investigated experimentally. In a shear cell of Taylor-Couette-type we find that how a granular shear flow starts depends strongly on the prior shear direction. If the shear direction is reversed, the material goes through a transient period during which the material compacts, the shear force is small, and the shear band is wide. Three-dimensional confocal imaging of particle rearrangements during shear reversal shows that bulk and surface flows are comparable. Repeated reversals, or oscillations of the shear direction, lead to additional compaction, which can be described by a stretched exponential, similar to compaction induced by tapping.  相似文献   

2.
We investigate the dynamic evolution of jamming in granular media through fluctuations in the granular drag force. The successive collapse and formation of jammed states give a stick-slip nature to the fluctuations which is independent of the contact surface between the grains and the dragged object, thus implying that the stress-induced collapse is nucleated in the bulk of the granular sample. We also find that while the fluctuations are periodic at small depths, they become "stepped" at large depths, a transition which we interpret as a consequence of the long-range nature of the force chains.  相似文献   

3.
We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity-independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.  相似文献   

4.
We report a novel transition to core precession for granular flows in a split-bottomed shear cell. This transition is related to a qualitative change in the 3D flow structure: For shallow layers of granular material, the shear zones emanating from the split reach the free surface, while for deep layers the shear zones meet below the surface, causing precession. The surface velocities reflect this transition by a change of symmetry. As a function of layer depth, we find that three qualitatively different smooth and robust granular flows can be created in this simple shearing geometry.  相似文献   

5.
The formation of granular ripples under liquid shear flow in an annular channel is studied experimentally. The erodible granular bed is subject to weakly turbulent flows without a defined sharp boundary layer close to the granular bed. The flow field and the degree of turbulence is characterized quantitatively by using a particle image velocimeter and a laser-Doppler velocimeter, respectively. A new range of particle Reynolds numbers at the lower limit of the Shields diagram were explored. Quantitative measurements of the granular flow on the surface reveal that the threshold for particle motion coincides within the order of one percent with the threshold for ripple formation. In fully developed ripples it was found that on the leeward side of the ripples regions of low-velocity gradients exist where granular motion is scarce, indicating that the coupling between the ripples is mainly caused by the flow field of the liquid.  相似文献   

6.
Experimentally determined dispersion relations for acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and the depth beneath the surface. The experiments confirm recent theoretical predictions that relaxation of the disordered granular packing through nonaffine motion leads to a peculiar scaling of shear rigidity with pressure near the jamming transition corresponding to zero pressure.  相似文献   

7.
Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g. , irrational braiding. These phases host "one and a half" dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semimetals that conduct only at T > 0 or with disorder.  相似文献   

8.
We study the flow of model hard-sphere colloidal suspensions at high volume fraction Phi driven through a constriction by a pressure gradient. Above a particle-size dependent limit Phi(0), direct microscopic observations demonstrate jamming and unjamming-conversion of fluid to solid and vice versa-during flow. We show that such a jamming flow produces a reduction in colloid concentration Phi(x) downstream of the constriction. We propose that this "self-filtration" effect is due to a combination of jamming of the particulate part of the system and continuing flow of the liquid part, i.e., the solvent, through the pores of the jammed solid. Thus we link jamming in colloidal and granular media with a "two-fluid-like" picture of the flow of concentrated suspensions. Results are also discussed in the light of the original experiments of Reynolds on dilation in granular materials.  相似文献   

9.
Many continuum theories for granular flow produce an equation of motion for the fluctuating kinetic energy density (granular temperature) that accounts for the energy lost in inelastic collisions. Apart from the presence of an extra dissipative term, this equation is very similar in form to the usual temperature equation in hydrodynamics. It is shown how a lattice-kinetic model based on the Bhatnagar-Gross-Krook (BGK) equation that was previously derived for a miscible two-component fluid may be modified to model the continuum equations for granular flow. This is done by noting that the variable corresponding to the concentration of one species follows an equation that is essentially analogous to the granular temperature equation. A simulation of an unforced granular fluid using the modified model reproduces the phenomenon of clustering instability, namely the spontaneous agglomeration of particles into dense clusters, which occurs generically in all granular flows. The success of the continuum theory in capturing the gross features of this basic phenomenon is discussed. Some shear flow simulations are also presented.  相似文献   

10.
Conservation equations are written for surface flows (either fluid or granular). The particularity of granular surface flows is then pointed out, namely that the depth of the flowing layer is not a priori fixed, leading to open equations. It is shown how some hypothesis on the flowing layer allows to close the system of equations. A possible hypothesis, similar to that made for a fluid layer, but inspired from granular flow experiments, is presented. The force acting on the flowing layer is discussed. Averaging over the flowing depth, as in shallow water theory, then allows to transform these conservation laws into equations for the evolution of the profile of a granular pile. Apart from their interest for building models, these conservation laws can be used to measure experimentally the effective forces acting on a flowing layer. Received 25 July 1998 and Received in final form 14 January 1999  相似文献   

11.
We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate.  相似文献   

12.
实验研究了竖直振动颗粒床中,倍周期运动对尺寸分离的影响.实验中,当振动加速度足够大时,系统中出现稳定的对称对流,进一步增大振动加速度到某个临界值时,还会出现倍周期运动.观察表明,背景颗粒的对流运动对分离过程起主导作用,对流速度决定着分离过程的快慢,而在2倍周期和4倍周期分岔之后,分离时间有所减慢.对引起对流运动的起因进行了分析,以此为基础分析了倍周期运动产生影响的物理机理,并对分离时间进行了定量计算,结果与实验值符合很好. 关键词: 颗粒物质 “巴西果”效应 倍周期分岔 对流  相似文献   

13.
Mathematical models that have been proposed for creep in ceramics are described. Emphasis is on models involving grain boundary motion (sliding or flow). In Lifshitz models the crystalline grains elongate with strain; the elongation results from diffusion, slip, or solution and precipitation. In Rachinger models the grains do not elongate during creep. The sliding strain can be accommodated by viscous flow of a glassy phase at the grain boundaries, or if there is no boundary glass by diffusion or slip in superplastic models. Sliding of a glass-free boundary can result in cavitation, cracking, or formation of boundary dislocations or triple point folds.

Most models of ceramic creep at high temperatures predict a steady state (stage II) creep rate that depends on the applied stress, grain size, and temperature. A general equation for the creep rate as a function of these factors, as well as the elastic modulus and a diffusion coefficient, is used to compare models. The models give different exponents for the functional dependence of creep rate on grain size and strain and different temperature dependencies. These differences are compared in tables, and the main mechanistic features of the models are described in the text.

The purpose of this review is to describe creep models rather than to compare them with experimental results or to select the most applicable models. There are few critical experimental tests that allow selection of the most accurate models; such experiments are suggested as the next step in choosing between the models for specific experimental results.  相似文献   


14.
Motions of individual particles within the stripe and square patterns formed in oscillated granular media are studied using numerical simulations. Our event-driven molecular dynamics simulations yield standing wave patterns in good accord with those observed in experiments at the same frequency and acceleration amplitude. The patterns are subharmonic and so return to their initial macroscopic state after two external cycles. However, simulations reveal that individual particles do not return to their initial position. In addition to diffusive motion, an organized flow of particles within the patterns is found; associated with each peak and each valley of the pattern is a pair of counterrotating convection rolls. The diffusion is anisotropic: transport perpendicular to stripes is enhanced over that parallel to stripes. This enhancement is computed as a function of the layer depth, acceleration amplitude, frequency, and coefficient of restitution of the particles, and is attributed to the effect of the advective motion. Velocity distributions, granular temperature, and the dependence of the diffusion coefficient parallel to the stripes on the average granular temperature are studied.  相似文献   

15.
Dynamical instabilities in fluid mechanics are responsible for a variety of important common phenomena, such as waves on the sea surface or Taylor vortices in Couette flow. In granular media dynamical instabilities have just begun to be discovered. Here we show by means of molecular dynamics simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal shear, which leads to the formation of a striped pattern where the components are segregated. We investigate the properties of such a Kelvin-Helmholtz-like instability and show how it is connected to pattern formation in granular flow and segregation.  相似文献   

16.
Unconfined granular flows along an inclined plane are investigated experimentally. During a long transient, the flow gets confined by quasistatic banks but still spreads laterally towards a well-defined asymptotic state following a nontrivial process. Far enough from the banks a scaling for the depth averaged velocity is obtained, which extends the one obtained for homogeneous steady flows. Close to jamming it exhibits a crossover towards a nonlocal rheology. We show that the levees, commonly observed along the sides of the deposit upon interruption of the flow, disappear for long flow durations. We demonstrate that the morphology of the deposit builds up during the flow, in the form of an underlying static layer, which can be deduced from surface velocity profiles, by imposing the same flow rule everywhere in the flow.  相似文献   

17.
颗粒介质的离散态特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
彭政  厚美瑛  史庆藩  陆坤权 《物理学报》2007,56(2):1195-1202
回顾了颗粒介质中应力的分布和传播模式以及物体在颗粒介质中运动所受阻力的研究进展,并报道了我们对颗粒体系中代表离散特性的颗粒尺寸效应对颗粒介质特性影响的研究.研究发现物体由于自身重量在颗粒介质中下沉的深度随着颗粒尺寸的增大单调减小;球体在下陷过程中受到的颗粒床的支撑力,除了在约1 mm范围的表面作用区域以外,与下陷深度之间满足很好的幂率关系,幂值在1.5—1.0之间,并且此幂值随着颗粒尺寸的增大而单调减小.颗粒床的支撑力与下陷深度的幂率关系可解释为颗粒介质内部应力结构重组的宏观反应结果. 关键词: 颗粒物质 离散介质力学  相似文献   

18.
We report on a cellular pattern which spontaneously forms at the surface of a thin layer of a cohesive granular material submitted to in-plane stretching. We present a simple model in which the mechanism responsible of the instability is the "strain softening" exhibited by humid granular materials above a typical strain. Our analysis indicates that such a type of instability should be observed in any system presenting a negative stress sensitivity to strain perturbations.  相似文献   

19.
20.
Sand is known to oppose an increasing resistance to penetration with depth. This is different from what happens in liquids since granular media, usually nonthermal systems, oppose solid friction to the motion. We report another striking and "counterintuitive" difference between the penetration dynamics observed in sand and in liquids. When pushing a top-closed shell (e.g., an upside down glass) into a liquid, the trapped air increases the buoyancy and opposes the penetration. It is more difficult to push a top capped cylinder than an opened one vertically into liquids. In contrast, the penetration is considerably easier in dense sand when cylinders are top capped. In this discrete and biphasic medium, the trapped air escapes from the shell, fluidizes the sand, and eases the motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号