首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

2.
A series of new 1‐substituted 3, 5‐diarylpyrazolines ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were synthesized in good yield by both conventional and microwave‐assisted synthesis from α, β‐ unsaturated ketones ( 6 , 7 , 8 , 9 ) in n‐butanol and benzothiazole hydrazines ( 2 , 3 , 4 , 5 ). All the new compounds were characterized by IR, NMR, and mass spectral data. The synthesized compounds ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were evaluated for antibacterial and anthelmintic activities. The compounds showed potent anthelmintic activity against earthworm species (Eudrilus eugeniae) and moderate antibacterial activity against bacterial strains such as Gram positive bacteria, Enterococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and Gram negative bacteria, Escherichia coli and Proteus mirabilis.  相似文献   

3.
A new series of 1‐(5‐(benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3H)‐ylidene)‐thiourea/urea derivatives ( 1a – j ) were designed and synthesized. For the first time, (i) a new process was developed for N‐methylation of 1,3,4‐thiadiazole moiety using dimethyl carbonate an environmentally benign reagent in presence of N,N,N′,N‐tetramethylethylenediamine and (ii) the sulfide was selectively oxidized to sulfoxide in higher yield by using chlorine (g) in aqueous acetic acid media under mild reaction condition. The synthesized compounds ( 1a – j ) were investigated for their antimicrobial activities. The tested compounds ( 1a – j ) were exhibited moderate to excellent antibacterial activities against both Gram‐positive and Gram‐negative bacterial strains. The same compounds exhibited good antifungal activities against selected fungal strains. Particularly, the compounds 1b , 1d , 1h , and 1i were proved to be promising leads exhibiting both antibacterial and antifungal activities compared with standard drugs, ciprofloxacin, and fluconazole. The presence of 1,3,4‐thiadiazole moiety has a significant role in the display of antimicrobial activity. In addition, the presence of both sulfinyl and thiourea or urea functionalities has enhanced the activity as per obtained antimicrobial activity data.  相似文献   

4.
《中国化学会会志》2017,64(1):36-42
Substituted‐1,2,4‐triazines were conveniently synthesized in one pot by the cyclization of arylnitroformaldehyde hydrazone derivatives 1 and 5 with different primary amines in ~37% formaldehyde solution. The synthesized compounds were arranged into novel mono‐, bis‐, and tris‐nitro‐1,2,4‐triazine derivatives 2 , 3 , 4 , 6 , and 7 . The antibacterial and antifungal activity of the synthesized compounds were screened against bacterial strains Escherichia coli (as Gram − ve) and Staphylococcus aureus (as Gram + ve), and fungal strains Aspergillus flavus and Candida albicans . All the synthesized compounds exhibit various patterns of inhibitory activity on the two pathogenic bacterial strains. However, the same compounds showed no activity against the tested fungal strains.  相似文献   

5.
Thiazole and bisthiazole derivatives represent a prevalent scaffold in the antimicrobial drug discovery. Therefore, we have decided to synthesize some new series of 4,5′‐bisthiazoles. A total of 17 compounds were synthesized, their structural elucidation being based on elemental analysis (C,H,N,S) and spectroscopic data (MS and 1H NMR). Their in vitro antimicrobial activities were assessed against several Gram‐positive and Gram‐negative bacteria strains and also against one fungal strain (Candida albicans) using the difusimetric method. Some of the compounds showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus and Bacillus cereus bacterial strains. All of the synthesized compounds showed moderate to very good antifungal activity against C. albicans.  相似文献   

6.
A series of Pyrido[2,3‐d]pyrimidine have been synthesized through a reaction of cyanoacetylurea derivatives with aromatic aldehydes or Arylidines. Reaction of compound 1 with aromatic arylidine derivatives or arylhydrazones gave Chromeno[3,4‐c]pyridine, Pyridine, Pyrimido[2,3‐c]pyridazine, Enediamines, and Pyridazine derivatives. All the synthesized compounds were confirmed by spectral studies and screened for their in antibacterial activity against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative) bacterial strains. All the compounds were weak to good active against the tested bacterial strains on comparing with the standard drug gentamicin.  相似文献   

7.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

8.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

9.
In connection with our studies on antibacterial active compounds in the class of new oxazolidinones against Gram‐positive (Staphylococcus aureus) and Gram‐negative (Escherichia coli) strains, some molecular modifications were attempted. In this study, molecular modifications of 4‐aminomethyloxazolidin‐2‐ones ( 3a ) to the corresponding 4‐acylaminomethyloxazolidin‐2‐one derivatives ( 3c–d ) and preparations of the represented twin‐drug type molecules ( 10–14 ) were investigated. Some additional 4‐dialkylaminomethyloxazolidin‐2‐ones ( 2 ) were also synthesized. The synthesized compounds were evaluated for antibacterial activity with Gram‐positive (S. aureus) and Gram‐negative (E. coli) strains.  相似文献   

10.
A practical, two‐step synthesis of crown ether functionalized pyrimidines has been developed. The reaction conditions have been optimized, and the protocol is generalized for series of substrates. These newly synthesized compounds exhibited antimicrobial activity against bacterial strains Staphylcoccus aureus (Gram‐positive) and Escherichia coli (Gram‐negative). These compounds were also found to be potent antifungal agents Aspergillus niger and Candida albicans strains, respectively.  相似文献   

11.
A novel series of bis(3‐thienyl‐4,5‐dihydropyrazoles) has been synthesized by the cyclization reactions of bischalcones with phenyl hydrazine in basic medium. The O‐alkylation reactions of chalcones with suitable 1,ω‐dibromoalkanes in the presence of anhydrous K2CO3, dry acetone, and Bu4N+I as PTC lead to the formation of bischalcones in good yields. The chalcone required was obtained from the Claisen–Schmidt condensation reaction of 2‐acetylthiophene with 3‐hydroxybenzaldehyde. Structures of prepared compounds were elucidated from their IR, 1H‐NMR, 13C‐NMR, and ESI‐MS spectral data. Newly synthesized compounds were screened for their antimicrobial potencies against Gram‐positive, Gram‐negative bacterial strains, and fungal strains using serial tube dilution method. Docking simulations have also been carried out to visualize the possible interaction of synthesized scaffold 2(a – g) and 3(a – g) at the active sites of Escherichia coli .  相似文献   

12.
A series of bioactive, triazole‐linked benzyl, aryl, sugar and aliphatic conjugates of 3‐ferrocenylidene‐oxindole have been synthesized. A facile 1,3‐dipolar‐Huisgen coupling reaction of the respective azides with the 3‐ferrocenylidene‐oxindole N‐propargyl moiety ( 3 ) gave the corresponding conjugates ( 5a–n ). All the newly synthesized compounds ( 5a–n ) were characterized by 1H‐NMR, 13C‐NMR, HRMS, Fourier transform‐infrared spectroscopy and elemental analysis. The UV–Vis and electrochemical studies of these compounds were performed in dimethylsulfoxide solutions. The structure of compound ( 3 ) was determined by single crystal X‐ray diffraction study. These compounds exhibited moderate to good antimicrobial activity against Gram‐positive and Gram‐negative strains.  相似文献   

13.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

14.
A series of 1,2‐dihydroquinoxaline‐3‐yl‐3‐substitutedphenyl‐1H‐pyrazole‐4‐carbaldehyde were synthesized and evaluated for their antimicrobial activity against two Gram‐positive and two Gram‐negative organisms and two fungal organisms. The study has shown that pyrazole‐4‐carbaldehyde‐incorporated quinoxaline was essential for activity. Among the compounds, 5a , 5c , 5d had shown significant activity against all selected strains when compared with control. These compounds may prove useful as antimicrobial agents.  相似文献   

15.
A series of novel 5‐arylazo‐thiazol‐2‐ylcarbamoyl‐thiophene derivatives was synthesized, and their chemical structures were secured by elemental and spectroscopic analyses. Their versatility for pharmaceutical purposes and textile dyeing as disperse dyes were reported. The synthesized dyes were applied to polyester fabrics by using high temperature dyeing method at 130°C. The dyed polyester fabrics displayed very good washing and perspiration fastness and moderate light fastness. Finally, the synthesized compounds showed biological activities against Bacillus subtilis, Staphylococcus aureus (Gram positive bacteria), Escherichia coli, and Pseudomonas aeruginosa (Gram‐negative bacteria), while no effect had been reported against fungi. The minimum inhibitory concentration of the most active compound was evaluated.  相似文献   

16.
A series of novel [4‐(1,2,3‐thiadiazol‐4‐yl)phenoxy]methylene anchored 1,3,4‐triazoles ( 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h ) and 1,3,4‐thiadiazoles ( 9a , 9b , 9c , 9d , 9e , 9f , 9g , 9h , 9i ) were synthesized from thiosemicarbazide ( 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j ). The structures of these newly synthesized compounds were confirmed on the basis of IR, 1H‐NMR, mass spectral techniques, and elemental analysis. The in vitro antimicrobial screenings of the synthesized compounds were carried out against four bacterial pathogens, namely Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and three fungal pathogens Candida albicans, Aspergillus niger and Aspergillus clavatus, using broth microdilution minimum inhibitory concentration method. The compounds 7d , 7j , 8a , 9a , 9b , and 9i exhibited promising antibacterial activity against the tested strains, whereas some compounds were found to be active against one of the tested bacterial strains.  相似文献   

17.
Novel steroidal (6R)‐spiro‐1,3,4‐thiadiazoline derivatives have been synthesized by the cyclization of steroidal thiosemicarbazones. Thiosemicarbazones have been synthesized by the reaction of steroidal ketones with thiosemicarbazide. All the compounds have been characterized by IR, 1H NMR, mass and elemental analyses. The antibacterial activities of these compounds have been first tested in vitro by the disk diffusion assay against two Gram‐positive and two Gram‐negative bacteria, and then the minimum inhibitory concentration (MIC) values have been determined with the reference of standard drug amoxicillin. The results showed that steroidal thiadiazoline derivatives exhibited better antibacterial activity than the steroidal thiosemicarbazone derivatives. Chloro and acetoxy substituents on the 3β‐position of the steroidal thiadiazoline ring increased the anti‐bacterial activity. Among all the compounds, compounds 7 and 8 were found better inhibitors as compared to the respective drug amoxicillin.  相似文献   

18.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

19.
A new series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline were synthesized from oxidative cyclization of N′‐((2‐(p‐tolyloxy)quinoline‐3‐yl)methylene)isonicotinohydrazide in DMSO/I2 at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, 1H‐NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity. J. Heterocyclic Chem., (2011).  相似文献   

20.
Novel 1‐carboxymethyl‐6‐fluoro‐7‐cyclic amino‐substituted‐4‐oxo‐1,4‐dihydroquinolone‐3‐carboxylic acids 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j , 7k , 7l , 7m , 7n were synthesized as a new class of quinolones. Ethyl‐6‐fluoro‐7‐chloro‐1,4‐dihydro‐4‐quinoline‐3‐carboxylic acid was prepared from conventional method and reacted with ethyl bromoacetate to furnish N‐carboxymethyl derivatives. The compounds were screed against various Gram‐positive and Gram‐negative bacterial strains. Antibacterial activity data is validated by molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号