首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between quantum dynamics and classical dynamics is considered from the perspective of an experimentalist. Since noise is present in all measurements, experimental results cannot be exact, but have a finite uncertainty. Accordingly, the deterministic dynamic theories do not describe some reality, but idealizations of nature. The idealization of quantum dynamics is different from the idealization of classical dynamics. The objects of the two theories are subject to different idealized conditions. The objects of classical dynamics are observable continuously, whereas the objects of quantum dynamics are unobservable.  相似文献   

2.
The influence of anharmonic renormalization effects on the decay dynamics of coherent longitudinal optical phonons is investigated from a microscopic point of view. Time-resolved coherent anti-Stokes Raman signals are calculated for GaP on the basis of a full phonon dispersion calculation, and the relevant decay channels are identified and compared. Anharmonic renormalization effects are found to induce non-Markovian behaviour of the decay dynamics and lead to a decrease of the decay time. The renormalization effects only depend on the special properties of the phonon dispersion of the given material. This underlines the intrinsic nature of the non-Markovian decay dynamics of phonons for any material. Non-Markovian dynamics of the decay of coherent LO-phonons is calculated for GaP and result in a 30% faster decay signal than the corresponding Markovian dynamics.  相似文献   

3.
The nonlinear dynamics of the magnetization in a spin-valve structure is investigated. Equations describing the dynamics of the magnetization in such a structure are obtained. The stability of the solution corresponding to a motionless flat domain wall is investigated. The nonlinear domain-wall dynamics are investigated in the approximation of a strong exchange interaction between the magnetic layers and in the approximation of a large magnetostatic energy. In the former case the nonlinear dynamical equations are shown to be similar to the equations describing the dynamics of the magnetization in a weak ferromagnet, and in the latter case they are similar to the equations of motion of a magnetic vortex (i.e., a vertical Bloch line) in a domain wall. Zh. éksp. Teor. Fiz. 116, 1365–1374 (October 1999)  相似文献   

4.
Presentation functions provide the time-ordered points of the forward dynamics of a system as successive inverse images. They generally determine objects constructed on trees, regular or otherwise, and immediately determine a functional form of the transfer matrix of these systems. Presentation functions for regular binary trees determine the associated forward dynamics to be that of a period doubling fixed point. They are generally parametrized by the trajectory scaling function of the dynamics in a natural way. The requirement that the forward dynamics be smooth with a critical point determines a complete set of equations whose solution is the scaling function. These equations are compatible with a dynamics in the space of scalings which is conjectured, with numerical and intuitive support, to possess its solution as a unique, globally attracting fixed point. It is argued that such dynamics is to be sought as a program for the solution of chaotic dynamics. In the course of the exposition new information pertaining to universal mode locking is presented.  相似文献   

5.
The modal interpretation of quantum mechanics allows one to keep the standard classical definition of realism intact. That is, variables have a definite status for all time and a measurement only tells us which value it had. However, at present modal dynamics are only applicable to situations that are described in the orthodox theory by projective measures. In this paper we extend modal dynamics to include positive operator measures (POMs). That is, for example, rather than using a complete set of orthogonal projectors, we can use an overcomplete set of nonorthogonal projectors. We derive the conditions under which Bell's stochastic modal dynamics for projective measures reduce to deterministic dynamics, showing (incidentally) that Brown and Hiley's generalization of Bohmian mechanics [quant-ph/0005026, (2000)] cannot be thus derived. We then show how deterministic dynamics for positive operators can also be derived. As a simple case, we consider a Harmonic oscillator, and the overcomplete set of coherent state projectors (i.e., the Husimi POM). We show that the modal dynamics for this POM in the classical limit correspond to the classical dynamics, even for the nonclassical number state |n>. This is in contrast to the Bohmian dynamics, which for energy eigenstates, the dynamics are always non-classical.  相似文献   

6.
We have studied the collective behaviour of a one-dimensional ring of cells for conditions when the individual uncoupled cells show stable, bistable and oscillatory dynamics. We show that the global dynamics of this model multicellular system depends on the system size, coupling strength and the intrinsic dynamics of the cells. The intrinsic variability in dynamics of the constituent cells are suppressed to stable dynamics, or modified to intermittency under different conditions. This simple model study reveals that cell–cell communication, system size and intrinsic cellular dynamics can lead to evolution of collective dynamics in structured multicellular biological systems that is significantly different from its constituent single-cell behaviour.  相似文献   

7.
Ferroelectric domain walls are atomically thin, and consequently their dynamics are sensitive to the periodic potential of the underlying lattice. Despite their central role in domain dynamics, lattice-scale effects have never been directly observed. We investigate local domain dynamics in thin film ferroelectrics using atomic-force microscopy. Upon combined dc and ac electric driving, fluctuations in the local piezoresponse are observed. Fourier analysis of the fluctuations reveals the presence of narrow band and broad band noise, and Barkhausen jumps. The narrow band noise is attributed to dynamics associated with lattice-scale pinning and is reproduced by a simple physical model.  相似文献   

8.
Neocortical dynamics evidently involves very complex, nonlinear processes including top-down and bottom-up interactions across spatial scales. The dynamics may also be strongly influenced by global (periodic) boundary conditions. The primary experimental measure of human neocortical dynamics at short time scales ( approximately few ms) is the scalp electroencephalogram (EEG). It is shown that different recording and data analysis strategies are sensitive to different parts of the spatial spectrum. Thus experimental measures of system dynamics (e.g., correlation dimension estimates) can generally be expected to depend on experimental method. These ideas are illustrated in two ways: a large scale, quasilinear theory of neocortical dynamics in which standing wave phenomenon occur with predicted frequencies in the general range of EEG, and a relatively simple nonlinear physical system consisting of a linear string with attached nonlinear springs. The string/springs system is integrated numerically to illustrate transitions from periodic to chaotic behavior as mesoscopic nonlinear influences dominate macroscopic linear effects. The implications of these results for new theories of neocortical dynamics, experimental estimates of dynamic properties, and cognitive EEG studies are considered.  相似文献   

9.
10.
In this paper we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly perturbed systems) which are everywhere continuous. We consider phase space topology of systems with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the reduced system is formed by a piecewise-continuous curve, and the differentiability is lost across the switching surface. In the full system the slow manifold is no longer continuous, and there is an O(?) discontinuity across the switching manifold, but the discontinuity cannot qualitatively alter system dynamics. Revealed phase space topology is used to unfold qualitative dynamics of planar slow-fast systems with an equilibrium point on the switching surface. In this case the local dynamics corresponds to so-called boundary-equilibrium bifurcations, and four qualitative phase portraits are uncovered. Our results are then used to investigate the dynamics of a box model of a thermohaline circulation, and the presence of a boundary-equilibrium bifurcation of a fold type is shown.  相似文献   

11.
李文亮  张季  姚洪斌 《物理学报》2013,62(12):123202-123202
多组态含时Hartree Fock 理论方法作为一种研究强激光场中多电子原子分子体系动力学行为的一种有效手段, 近几年来备受关注. 本文介绍了该方法的发展历史, 重点介绍了本研究组近几年来对该理论方法的发展, 以及多组态含时Hartree Fock理论方法在原子基函数表象、 格点表象、 二次量子化表象不同的实现方案, 并就典型体系做了大量详细的计算. 同时也详细介绍了该方法在实际应用中存在的挑战, 展望了多组态含时Hartree Fock理论方法的发展应用前景. 关键词: 强激光场 多电子动力学 电子相关  相似文献   

12.
Molecular dynamics simulations of mobile particles confined in disordered immobile particles are carried out. Slow dynamics in random media are characterized by two types of dynamics: Type B dynamics for large mobile particle density and Type A dynamics for small mobile particle density. The crossover from Type A to B dynamics is studied by the mean square displacement and the density correlation function. Our results are qualitatively consistent with the results of recent numerical and theoretical studies on relevant spatially heterogeneous systems. We also investigate the effect of random matrix generation on the dynamics of mobile particles in order to examine the reentrant transition predicted by the recent mode-coupling theory. Our simulations demonstrate that the diffusion of the mobile particles largely depends on the protocol of the random matrix generation and that the reentrant transition is observed for a particular protocol.  相似文献   

13.
The dynamics of water, confined on a nanometer length scale (1.7 to 4.0 nm) in sodium bis-(2-ethylhexyl) sulfosuccinate reverse micelles, is directly investigated using frequency resolved infrared vibrational echo experiments. The data are compared to bulk water and salt solution data. The experimentally determined frequency-frequency correlation functions show that the confined water dynamics is substantially slower than bulk water dynamics and is size dependent. The fastest dynamics (approximately 50 fs) is more similar to bulk water, while the slowest time scale dynamics is much slower than water, and, in analogy to bulk water, reflects the making and breaking of hydrogen bonds.  相似文献   

14.
The aim of this mini review is to survey the literature on the study of nonequilibrium dynamics of Fermi superfluids in the BCS and BEC limits, both in the single channel and dual channel cases. The focus is on mean field approaches to the dynamics, with specific attention drawn to the dynamics of the Ginzburg-Landau order parameters of the Fermi and composite Bose fields, as well as on the microscopic dynamics of the quantum degrees of freedom. The two approaches are valid approximations in two different time scales of the ensuing dynamics. The system is presumed to evolve during and/or after a quantum quench in the parameter space. The quench can either be an impulse quench with virtually instantaneous variation, or a periodic variation between two values. The literature for the order parameter dynamics, described by the time-dependent Ginzburg-Landau equations, is reviewed, and the works of the author in this area highlighted. The mixed phase regime in the dual channel case is also considered, and the dual order parameter dynamics of Fermi-Bose mixtures reviewed. Finally, the nonequilibrium dynamics of the microscopic degrees of freedom for the superfluid is reviewed for the self-consistent and non self-consistent cases. The dynamics of the former can be described by the Bogoliubov de-Gennes equations with the equilibrium BCS gap equation continued in time and self -consistently coupled to the BdG dynamics. The latter is a reduced BCS problem and can be mapped onto the dynamics of Ising and Kitaev models. This article reviews the dynamics of both impulse quenches in the Feshbach detuning, as well as periodic quenches in the chemical potential, and highlights the author’s contributions in this area of research.  相似文献   

15.
Low-energy dynamics and spectrum of the Schrödinger operator on curved surfaces in a magnetic field are considered. Nano-and micro-algebraic structures generate a quantization of the surface. On this quantum space, the dynamics has a “surfing” behavior described via curvature invariants. Two types of surface deformations correspond to trapping and transistor types of dynamics.We observe the “negative mass” effect in the low-energy spectrum under trapping deformations. We also compute, in geometrical terms, the energy levels near the spectral bottom (these levels are below the minimal Landau level). The surfing dynamics and the spectrum are independent of the magnitude of the magnetic field.  相似文献   

16.
The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of laser light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, are also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential.  相似文献   

17.
We perform echo spectroscopy on ultracold atoms in atom-optics billiards to study their quantum dynamics. The detuning of the trapping laser is used to change the "perturbation", which causes a decay in the echo coherence. Two different regimes are observed: first, a perturbative regime in which the decay of echo coherence is nonmonotonic and partial revivals of coherence are observed in contrast with the predictions of random matrix theory. These revivals are more pronounced in traps with mixed dynamics as compared to traps where the dynamics is fully chaotic. Next, for stronger perturbations, the decay becomes monotonic and independent of the strength of the perturbation. In this regime no clear distinction can be made between chaotic traps and traps with mixed dynamics.  相似文献   

18.
The reduced dynamics of a V-type three-level atom in a structure reservoir is presented,which has the exact solution in certain special condition.The Markovian and non-Markovian master equations for this composite system are solved and compared with the exact solution.The solving approach can be directly generalized to the solution of a V-type multilevel system dynamics interacting with a reservoir.The results further testify that these two kinds of master equations are exploited in different coupling regime,providing guidance for further application of these variants master equations to solve multilevel system dynamics without the exact solution.  相似文献   

19.
The possibility of tidal dynamics at strictly imaginary Lamb parameters has been known for more than three decades. The present paper explores the prevailing physics in this parameter regime. To this end, basic features of the global circulation such as baroclinicity and geostrophy have to be incorporated into tidal dynamics. The tidal equations of the thermal wind are readily obtained in the framework of spherical bishallow water theory. Density surfaces of a circulation with available potential energy alter the spatial inhomogenities of the generic tidal problem. Wave dynamics in an inhomogeneous medium are characterized not only by a dispersion relation but also by a wave guide geography: significant wave amplitudes are trapped in specific regions of frequency-dependent width. As an inherently global issue, evaluation of the Rossby wave guide geography for a given circulation cannot rely on the familiar regional filters of tidal theory. On the global domain, the Rossby wave specification is given by the Margules filter. A thermal wind is stable against nondivergent Rossby wave disturbances. Rossby waves propagating with a geostrophic wind are governed by prolate dynamics (real Lamb parameters) while imaginary Lamb parameters emerge for the oblate dynamics of Rossby waves running against a geostrophic wind. Oblate Rossby wave dynamics include pole-centered wave guides and very low-frequency disturbances propagating eastward against a westward wind.  相似文献   

20.
The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid–liquid–vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号