首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
置换法制备核壳结构Cu/Al复合粉末   总被引:2,自引:0,他引:2  
在以明胶为保护剂、氟离子为络合剂的水溶液中, 采用Al粉直接置换还原铜盐的方法, 实现了纳米Cu在Al粉表面的快速化学沉积, 制备出核壳结构的Cu/Al复合粉末. 提出了置换反应的机理和历程, 探讨了反应的影响因素. 利用SEM, XRD, EDS, BET等测试手段对复合粉末进行了微观测试和表征. 结果表明: Al粉表面连续、均匀包覆了由晶粒大小约20 nm的Cu纳米颗粒组成的壳层.  相似文献   

2.
Al-doped ZnO powders were synthesised by a Pechini process in order to obtain visible non-absorbent and near-Infrared absorbent particles. Firstly, it has been shown that synthesis under argon combined with the lowest synthesis temperatures (700 °C) allows getting the optimal properties for pure ZnO compounds due to creation of n-type defects segregated on oxide grain surface (Zn/O ratio superior to 1). Nevertheless, the near-Infrared absorption properties of the pure ZnO compounds remain low. The Al3+ doping of ZnO compounds was then investigated. The Al solubility limit inside ZnO doped compounds decreases drastically with the grain size, i.e. with the synthesis temperature. Then, the Al cations distribution varies inside ZnO grains, Al3+ segregation at the grain surfaces taking place for high synthesis temperatures. The optimal optical properties (high near-Infrared absorption) are reached combining Al-doping and adequate synthesis conditions: annealing under argon at low temperatures. In these conditions, the highest extrinsic (via Al doping) and intrinsic n-types defects rates are indeed reached.  相似文献   

3.
Adsorption of nitrogen on Al-3% La, Al-1.5% Sc, and Al-3% Ce powders before and after processing with water in the relative pressure range p/p s = 10~3 to 0.999 is experimentally studied at a temperature of 78 K. It is shown that the interaction between ultradispersed powder and water depends on the properties of the original powder, including the original content and composition of the oxide-hydroxide phases in the surface layers of metal particles, and the length and conditions of storage. Results confirming that processing powders containing rare-earth metals with water at room temperature leads to the formation of new phases and affects their morphology are presented. It is shown that the nanopores formed between crystallites on the surface of the particles during oxidation with water and subsequent thermal dehydration play an important role in the properties of powders processed with water. The specific surface and the porosity of powders are calculated.  相似文献   

4.
Interaction (25–620°C) of aluminum and its alloys with an atmosphere saturated with nitrogen was studied to determine the role played by rare-earth metals in the mechanism by which nitride phases are formed in oxidation of Al + REM alloys in air. The ellipsometric method and Auger electron spectroscopy were used to determine that, under the given experimental conditions, metallic aluminum is subjected to the greatest extent to the nitridation process, which is competing with the oxidation process. The process is initiated by the conversion of the amorphous oxide film to γ-Al2O3. The surface of Al + REM alloys interacts with nitrogen at the outer part of the oxide layer. The rare-earth metal actively reacts with impurity oxygen present in the atmosphere under study and hinders formation of nitride/oxynitride layers.  相似文献   

5.
近年来,由于中空的球形材料具有良好的表面渗透性、低密度和高比表面积等性质而受到人们的普遍关注,在无机中空球的制备过程中,所采用的方法大多为模板法,合成的无机中空球主要以SiO2、金属氧化物(如TiO2和SnO2等)及金属(金、银、钯和镍等)为主,而有关二元复合氧化物中空球合成的研究报道较少,制备球壳上具有介孔的中空球已有报道,但是,其得到的介孔常常不均一,因此,将中空球形材料、复合氧化物和均一介孔有效地结合起来将是非常有意义一项工作。  相似文献   

6.
Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 °C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 °C, exhibiting excellent thermal stability.  相似文献   

7.
Differential scanning calorimetry, thermogravimetry, and X-ray diffraction analysis were used to study the fundamental aspects of structural-chemical transformations occurring under the action of temperature in the range 50–1530°C in the system constituted by alumina core and phosphorus oxide shell synthesized by the molecular-layering method. It was shown that, as the P/Al molar ratio in the system increases from 0.05 to 0.14, the stability range of low-temperature forms of alumina extends to higher temperatures because crystalline aluminum phosphate is formed on the surface. It was demonstrated that using an inorganic binder based on a silicate binding agent and alumina modified with an aluminum phosphate layer provides a ~3.5-fold increase in the mechanical strength of the material at a ~5-fold decrease in the internal stress as compared with the composition with the unmodified oxide.  相似文献   

8.
The reaction kinetics of aluminum (Al) and polytetrafluoroethylene (PTFE or Teflon) were recently examined using nanoparticles of both Al and Teflon. Results showed a unique pre-ignition reaction (PIR) associated with the nano-Al/Teflon mixture that was not significant in the micron-Al/Teflon mixture. The PIR is caused by fluorination of the alumina (Al2O3) shell passivating the Al particles and reduces the onset temperature of Al ignition for nano compared with micron particle mixtures. Because the alumina shell was found to play a key role in the reaction mechanism, this communication extends our understanding of the interaction between alumina and Teflon by examining the influence of alumina particle size, and therefore surface area, on the fluorination reaction with Teflon. Differential scanning calorimetry analysis show that reaction kinetics vary dramatically as the alumina particle size is reduced from 50 to 15 nm diameter. Specifically, for 15 nm diameter alumina, the first exotherm (corresponding to the PIR) exhibits three times more heat of reaction than for the 30, 40, or 50 nm alumina particles. These results show how particle size and specific surface area affect the Al–Teflon reaction mechanism.  相似文献   

9.
The effects of aluminum (Al) and nickel (Ni) powders of various grain sizes on the thermal decomposition of ammonium perchlorate (AP) were investigated by TG and DSC in a dynamic nitrogen atmosphere. The TG results show that Al powders have no effect on the thermal decomposition of AP at conventional grain size, while the nanometer-sized Ni powders (n-Ni) have a great influence on the thermal decomposition of AP with conventional and superfine grain size. The results obtained by DSC and an in situ FTIR analysis of the solid residues confirmed the promoting effects of n-Ni. The effects of n-Ni have been ascribed to its enhancement on the gas phase reactions during the second step decomposition of conventional grain size AP.  相似文献   

10.
Molecular dynamics simulations of the oxidation of aluminum nanoparticles   总被引:2,自引:0,他引:2  
The oxidation of aluminum nanoparticles is studied with classical molecular dynamics and the Streitz-Mintmire (Streitz, F. H.; Mintmire, J. W. Phys. Rev. B 1994, 50, 11996) electrostatic plus (ES+) potential that allows for the variation of electrostatic charge on all atoms in the simulation. The structure and charge distributions of bulk crystalline alpha-Al(2)O(3), a surface slab of alpha-Al(2)O(3) with an exposed (0001) basal plane, and an isolated Al(2)O(3) nanoparticle are studied. Constant NVT simulations of the oxidation of aluminum nanoparticles are also performed with different oxygen exposures. The calculations simulate a thermostated one-time exposure of an aluminum nanoparticle to different numbers of surface oxygen atoms. In the first set of oxidation studies, the overall approximate ratios of Al to O in the nanoparticle are 1:1 and 2:1. The nanoparticles are annealed to 3000 K and are then cooled to 500, 1000, or 1500 K. The atomic kinetic energy is scaled during the simulation to maintain the desired temperature. The structure and charge distributions in the oxidized nanoparticles differ from each other and from those of the bulk Al(2)O(3) phases. In the Al(1)O(1) simulation, an oxide shell forms that stabilizes the shape of the particle, and thus the original structure of the nanoparticle is approximately retained. In the case of Al(1)O(0.5), there is insufficient oxygen to form a complete oxide shell, and the oxidation results in particles of irregular shapes and rough surfaces. The particle surface is rough, and the nanoparticle is deformed.  相似文献   

11.
The micromorphology of highly dispersed ZnO powders formed from Zn(OH)2 gels under hydrothermal conditions is studied by powder X-ray diffraction, X-ray diffraction analysis, and low-temperature nitrogen adsorption. The parameters of hydrothermal synthesis (heating rate, treatment duration, and temperature) are found to effect the microstructural characteristics of the products. The photocatalytic activity of the synthesized zinc oxide samples in the model reaction of Methyl Orange photodegradation is studied. The synthesis parameters for preparing ZnO powders with high photocatalytic activity are determined.  相似文献   

12.
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.  相似文献   

13.
The rheology of mixtures of hydrated aluminum oxide and hydrated titanium dioxide sols was investigated. It was shown that flow curves depend on the mixture composition, the age of initial sols, the contact time of components, and the temperature. At low deformation rates, particles are aligned with the flow; this effect is partially reversible. At high shear rates, a discontinuity appears in the system; the effect depends on the age of initial sols.  相似文献   

14.
The rules governing the oxidation of aluminum nanopowders obtained by the electrical explosion of wires during heating in air under the conditions of linearly increasing temperature and in isothermal regime were studied. The influence of the composition and structure of aluminum particle oxide coating and metallic core on the parameters of the process and the phase composition and morphology of oxidation products was determined. Thermal reaction conditions were shown to depend on thermogravimetry regime, and the kinetic data were used to explain this dependence. The kinetics of oxidation was modeled taking into account the aluminum particle-size distribution function. It was shown that the structures of particles of the nanodisperse and micron electroexplosive powder fractions were different.  相似文献   

15.
It is well-known that chlorine active species (e.g., Cl(2), ClONO(2), ClONO) can form from heterogeneous reactions between nitrogen oxides and hydrogen chloride on aerosol particle surfaces in the stratosphere. However, less is known about these reactions in the troposphere. In this study, a potential new heterogeneous pathway involving reaction of gaseous HCl and HNO(3) on aluminum oxide particle surfaces, a proxy for mineral dust in the troposphere, is proposed. We combine transmission Fourier transform infrared spectroscopy with X-ray photoelectron spectroscopy to investigate changes in the composition of both gas-phase and surface-bound species during the reaction under different environmental conditions of relative humidity and simulated solar radiation. Exposure of surface nitrate-coated aluminum oxide particles, from prereaction with nitric acid, to gaseous HCl yields several gas-phase products, including ClNO, NO(2), and HNO(3), under dry (RH < 1%) conditions. Under humid more conditions (RH > 20%), NO and N(2)O are the only gas products observed. The experimental data suggest that, in the presence of adsorbed water, ClNO is hydrolyzed on the particle surface to yield NO and NO(2), potentially via a HONO intermediate. NO(2) undergoes further hydrolysis via a surface-mediated process, resulting in N(2)O as an additional nitrogen-containing product. In the presence of broad-band irradiation (λ > 300 nm) gas-phase products can undergo photochemistry, e.g., ClNO photodissociates to NO and chlorine atoms. The gas-phase product distribution also depends on particle mineralogy (Al(2)O(3) vs CaCO(3)) and the presence of other coadsorbed gases (e.g., NH(3)). These newly identified reaction pathways discussed here involve continuous production of active ozone-depleting chlorine and nitrogen species from stable sinks such as gas-phase HCl and HNO(3) as a result of heterogeneous surface reactions. Given that aluminosilicates represent a major fraction of mineral dust aerosol, aluminum oxide can be used as a model system to begin to understand various aspects of possible reactions on mineral dust aerosol surfaces.  相似文献   

16.
The formation of the structure and properties of mesoporous composite ceramics based on an ASD-1 aluminum powder and commercial adsorbent powders (zeolites and active alumina) was studied. It was found that the mechanism of the formation of contacts between the particles of commercial adsorbents and aluminum is analogous to the mechanism of synthesis of an Al(OH)3/Al composite. The dissolution of aluminum and the precipitation of the hydroxo complexes of aluminum from solution to the region of interparticle contacts are responsible for this mechanism. The resulting composite ceramics exhibited a polydisperse pore structure and high values of mechanical strength, gas permeability, and thermal conductivity; it can be used as a block adsorbent and catalyst support.  相似文献   

17.
Polystyrene (PS)/aluminum hydroxide (Al(OH)(3)) composite particles were successfully prepared by the sol-gel process of aluminum isopropoxide (Al(OPr(i))(3)) in a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) using ammonium hydroxide (NH(4)OH) as a catalyst in the presence of PS seed. Transmission electron microscopy observation of ultrathin cross-sections of the composite particles revealed that the composite particles had a core-shell morphology consisting of a PS core and a Al(OH)(3) shell having high crystallinity. The amount of secondary nucleated Al(OH)(3) could be reduced by dropwise addition of NH(4)OH. Moreover, PS/η-Al(2)O(3) composite particles were successfully prepared by heat treatment of PS/Al(OH)(3) at 300 °C in N(2) atmosphere, which is below the decomposition temperature of PS.  相似文献   

18.
A new powder metallurgy technique was developed in order to increase the reinforcement proportion of aluminum with two different fractions of Al2O3. Aluminum powders were mixed with 20 % vol of alumina particles as primarily reinforcement, and additional alumina was produced in situ as a result of reaction between Al and additional 7.5 % vol of Fe2O3 powder. The three grades of powders were milled and hot-pressed into small preforms, and differential scanning analysis (DSC) was performed to determine the kinetics of microstructural transformations produced on heating. DSC curves were mathematically processed to separate the superposing effects of thermal reactions. Transformation points on resulting theoretical curves evidenced two distinct exothermal reaction peaks close to the melting point of aluminum that were correlated with formation of Fe–Al compounds and oxidation of aluminum. Microstructural investigations by means of SEM-EDX and XRD suggested that these exothermal reactions produced complete decomposition of iron (III) oxide and formation of Fe–Al compounds during sintering at 700 °C, and therefore, heating at higher temperatures would not be necessary. These results, along with calculation of activation energies, based on Kissinger’s method, could be used to optimize the fabrication of Al-Al2O3 composites by means of reactive sintering at moderate temperatures.  相似文献   

19.
采用共沉淀法制备了Ca/Al复合氧化物固体碱催化剂,考察了沉淀剂种类、Ca/Al摩尔比、沉淀温度、溶液pH值、老化时间和焙烧温度等制备条件对其催化剂活性的影响。采用正交实验方法得到制备Ca/Al复合固体碱催化剂前躯体的最佳制备条件为,沉淀剂NaOH,Ca/Al摩尔比为3,沉淀温度为60 ℃,沉淀过程中pH值保持在10,在90 ℃老化18 h。在该最优条件下制备的催化剂前驱体主要以Ca4Al2O6(NO3)2·10H2O晶相存在,在N2气保护下300 ℃焙烧2 h后,催化剂形成高分散钙铝复合氧化物,且碱性强度达到26.5以上。在催化菜籽油和甲醇的酯交换反应中,菜籽油的转化率达到95%,脂肪酸甲酯的质量分数为95.9%。  相似文献   

20.
Zn/Al mixed oxide was prepared by the coprecipitation or the hydrothermal method under different conditions and used as catalyst for synthesis of glycerol carbonate by carbonylation of glycerol with urea. The physical properties of the prepared Zn/Al mixed oxide particles were investigated, as well as their activity as catalyst in the mentioned synthesis. The dried Zn/Al mixed-oxide particles prepared by the coprecipitation method showed higher activity in synthesis of glycerol carbonate than those prepared by the hydrothermal method. The Zn/Al mixed oxide prepared by the coprecipitation method without NaNO3 showed the highest catalytic activity in synthesis of glycerol carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号