首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
陈勇 《高分子科学》2010,28(6):895-902
<正>A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.  相似文献   

2.
We describe a generic method for polymer surface modification and functionalization that is applicable for substrates of arbitrary shape. The method involves the deposition of monolayer and submonolayer films of photoactive block copolymers from supercritical fluids. Poly(styrene-b-tert-butyl acrylate), poly(S-b-tBA), block copolymer monolayers form spontaneously on polystyrene substrates by adsorption from scCO2 when hexane is used as a cosolvent. Atomic force microscopy indicates the films are flat and without pores after modification. Ethylene glycol contact angles increase linearly with deposition pressure until a constant value, equal to that of pure P tBA, is attained at pressures of 18 MPa or greater at 40 degrees C. This trend mimics the change in block copolymer solubility with pressure and indicates that the block copolymer self-assembles and orders at the surface, presenting a P tBA layer at the air interface with the PS block orienting toward the PS substrate. The P tBA layer thickness, determined by angle dependent X-ray photoelectron spectroscopy, reaches a saturated monolayer value of ca. 2 nm for pressures of 18 MPa and higher, consistent with the thickness expected for unperturbed PtBA chains comprising a wet brush. This concept for polymer surface modification initially produces a hydrophobic surface due to surface adsorption of the low surface tension PtBA block, but can also be used to prepare hydrophilic, functional surfaces, either modified or patterned with carboxylic acid groups, by photolytic or acid catalyzed deprotection/hydrolysis of the tert-butyl ester groups.  相似文献   

3.
采用超声波辐照聚合的羧甲基纤维素 (CMC)系列高分子表面活性剂是由CMC嵌段和含有等长双亲性支链的嵌段构成的共聚物 ,研究结果表明 ,CMC链段保证了共聚物的增粘性能 ,双亲性嵌段提供了共聚物优良的表面活性 ;CMC增粘嵌段与表面活性嵌段作为共聚物的两个嵌段 ,各发挥其作用 ,得到既有增粘性能又有高表面活性的双亲性共聚物 .  相似文献   

4.
We report here the photochemical surface modification of poly(methyl methacrylate), PMMA, microfluidic devices by UV light to yield pendant carboxylic acid surface moieties. Patterns of carboxylic acid sites can be formed from the micrometer to millimeter scale by exposure of PMMA through a contact mask, and the chemical patterns allow for further functionalization of PMMA microdevice surfaces to yield arrays or other structured architectures. Demonstrated here is the relationship between UV exposure time and PMMA surface wettability, topography, surface functional group density, and electroosmotic flow (EOF) of aqueous buffer solutions in microchannels made of PMMA. It is found that the water contact angle on PMMA surfaces decreases from 70 degrees to 24 degrees after exposure to UV light as the result of the formation of carboxylic acid sites. However, upon rinsing with 2-propanol, the water contact angle increases to approximately 80 degrees , and this increase is attributed to changes in surface roughness resulting from removal of low molecular weight PMMA formed from scission events. In addition, the surface roughness and surface coverage of carboxylic acid groups exhibit a characteristic trend with UV exposure time. Electroosmotic flow (EOF) in PMMA microchannels increases upon UV modification and is pH dependent. The possible photolysis mechanism for formation of carboxylic acid groups on PMMA surfaces under the conditions outlined in this work is discussed.  相似文献   

5.
Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks.  相似文献   

6.
含羧基的含氟嵌段共聚物的合成及表面性能研究   总被引:6,自引:0,他引:6  
利用原子转移自由基聚合反应以及随后的大分子链中叔丁酯基团的水解反应,合成了一系列具有不同含氟量和羧基含量的二嵌段共聚物,并分别通过GPC, 1H NMR和FT-IR对共聚物的组成和结构进行了表征.进一步考察了这些含羧基或羧酸钠基团的含氟嵌段共聚物在吡咯烷酮或水中的溶解性能、临界胶束浓度、表面活性、达到饱和吸附时每个分子在表面所占据的面积,以及成膜后的临界表面张力等性能.实验结果表明,此含氟嵌段共聚物能显著降低吡咯烷酮和水的表面张力,成膜后表现出与聚四氟乙烯极为接近的低表面能特性.  相似文献   

7.
Functionalized alkanethiols have been self-assembled on gold to modify the wetting properties of the surface and promote or hinder the adsorption of block copolymers containing both hydrophobic and hydrophilic blocks. X-ray photoelectron spectroscopy (XPS) studies of spin-coated polyethylene-block-poly(ethylene oxide) (PE-b-PEO) copolymers on 16-mercaptohexadecanoic acid (MHDA)-, octadecanethiol (ODT)-, and 1H,1H,2H,2H-perfluorodecanethiol (PFDT)-covered surfaces have been performed. In the case of an 80 wt % PEO block copolymer, spin-coating on a gold surface precovered with MHDA results in a polymer film thick enough to completely attenuate Au 4f photoelectrons; spin-coating on the more hydrophobic ODT and PFDT monolayers leads to significantly thinner polymer films and incomplete attenuation of the gold photoelectrons. The opposite results are observed when a 20 wt % PEO block copolymer is used. Angle-resolved XPS studies of the 80 wt % PEO block copolymer spin-coated onto an MHDA-covered surface indicate that the PE blocks of the polymer segregate to the near-surface region, oriented away from the hydrophilic carboxylic acid tails of the monolayers; the surface concentration of PE is further enhanced by annealing at 90 degrees C. Microcontact printing and dip-pen nanolithography have been used to pattern gold surfaces with MHDA, and the surfaces have been backfilled with ODT or PFDT, such that the unpatterned regions of the surface are covered with hydrophobic monolayers. In the case of backfilling with PFDT, spin-coating the 80 wt % PEO copolymer onto these patterned surfaces and subsequent annealing results in the block copolymer preferentially adsorbing on the MHDA-covered regions and forming well-defined patterns that mimic the MHDA pattern, as determined by scanning electron microscopy and atomic force microscopy. Significantly worse patterning, characterized by micron-sized polymer droplets, results when the surface is backfilled with ODT instead of PFDT. Using PFDT and MHDA, polymer features having widths as small as 500 nm have been formed. These studies demonstrate a novel method to pattern block copolymers with nanoscale resolution.  相似文献   

8.
Polyacrylate-fluorosilicone block copolymers, namely, polyacrylate-b-polydimethylsiloxane and polyacrylate-bpolymethyltrifluoropropylsiloxane were synthesized for fabricating icephobic coatings. The surface morphology and chemical composition of the block copolymers were characterized by atomic force microscopy and X-ray photoelectron spectroscopy, suggesting that the fluorosilicone blocks aggregated on the top of the copolymer surfaces. Results of water contact angles and ice shear strength demonstrated a certain amount adding of methacryloisobutyl polyhedral oligomeric silsesquioxane could lead to the decrease of contact angle hysteresis and increase of surface roughness, consequently resulting in significant reduction of the ice adhesion strength. Therefore, the block copolymers with the combined advantages of silicone and fluoropolymers could be potentially applied as icephobic coatings.  相似文献   

9.
The surface modifications of plastic or glass substrate and the subsequent immobilization of biomolecules onto the surfaces has been a central feature of the fabrication of biochips. To this end, we designed and synthesized new epoxide-containing random copolymers that form stable polymer adlayers on plastic or glass surface and subsequently react with amine or sulfhydryl functional groups of biomolecules under aqueous conditions. Epoxide-containing random copolymers were synthesized by radical polymerization of three functional monomers: a monomer acting as an anchor to the surfaces, a PEG group for preventing nonspecific protein adsorption, and an epoxide group for conjugating to biomolecules. Polymer coating layers were facilely formed on cyclic olefin copolymer (COC) or glass substrate by simply dipping each substrate into a solution of each copolymer. The polymer-coated surfaces characterized by a contact angle analyzer and X-ray photoelectron spectroscopy (XPS) showed very low levels of nonspecific immunoglobulin G (IgG) adsorption compared to the uncoated bare surface (control). Using a microcontact printing (μCP) method, antibodies as representative biomolecules could be selectively attached onto the copolymers-coated glass or COC surface with high signal-to-noise ratios.  相似文献   

10.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

11.
Surfaces of novel block copolymers with amphiphilic side chains were studied for their ability to influence the adhesion of marine organisms. The surface-active polymer, obtained by grafting fluorinated molecules with hydrophobic and hydrophilic blocks to a block copolymer precursor, showed interesting bioadhesion properties. Two different algal species, one of which adhered strongly to hydrophobic surfaces, and the other, to hydrophilic surfaces, showed notably weak adhesion to the amphiphilic surfaces. Both organisms are known to secrete adhesive macromolecules, with apparently different wetting characteristics, to attach to underwater surfaces. The ability of the amphiphilic surface to undergo an environment-dependent transformation in surface chemistry when in contact with the extracellular polymeric substances is a possible reason for its antifouling nature. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) was used, in a new approach based on angle-resolved X-ray photoelectron spectroscopy (XPS), to determine the variation in chemical composition within the top few nanometers of the surface and also to study the surface segregation of the amphiphilic block. A mathematical model to extract depth-profile information from the normalized NEXAFS partial electron yield is developed.  相似文献   

12.
We report thiol-on-gold self-assembled monolayers (SAMs) that can be photodeprotected using soft UV irradiation (lambda = 365 nm) to yield CO(2)H functionalized surfaces complementing those reported previously, which yielded NH(2) functionalized surfaces. The photolysis of these SAMs were monitored using a combination of surface sensitive techniques. In the SAM environment the photodeprotection yields are lower than those obtained for equivalent reactions in dilute solution. The protected carboxylic acids SAMs are shown to have a low yield approximately 50% due to competing photoreduction reactions of the nitro group. The results from infrared studies show that, as the photolysis progresses, the long chain protected residues reorganize and shield the functional COOH groups, thereby reducing the hydrophilic character of the surface.  相似文献   

13.
Well‐defined amphiphilic pentablock copolymers Siy‐(EGx‐FAz)2 composed of polysiloxane (Si), polyethylene glycol (EG), and perfluorohexylethyl polyacrylate (FA) blocks are synthesized by ATRP of FA monomer starting from a difunctional bromo‐terminated macroinitiator. Diblock copolymers EGx‐FAz are also synthesized as model systems. The block copolymers are used, either alone or blended with a PDMS matrix in varied loadings, to prepare antibiofouling coatings. Angle‐resolved XPS and contact angle measurements show that the coating surface is highly enriched in fluorine content but undergoes reconstruction after contact with water. Protein adsorption experiments with human serum albumin and calf serum highlight that diblock copolymers resist protein adhesion better than do pentablock copolymers. Blending of the pentablock copolymer with PDMS results in increased protein adsorption. By contrast, the PDMS‐matrix coatings show high removal percentages of sporelings of the green fouling alga Ulva linza. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1213–1225  相似文献   

14.
Functional group gradient surfaces where the density of functional groups changes gradually along the sample length were prepared. The functional group (? COOH, ? CONH2, and ? OH group) gradient surfaces were produced by the treatment of low-density PE sheets using a corona with gradually increasing power, followed by the graft copolymerization of acrylic acid and subsequent substitution reaction of carboxylic acid groups to amide or hydroxyl groups. The prepared gradient surfaces were characterized by the measurement of water contact angle, FTIR-ATR, and ESCA. The gradient surfaces prepared can be used to systematically investigate the interactions of biological or other species in terms of the surface functional groups and their density of polymeric materials. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The surface properties of films made of p-methoxyphenacyl derivative terpolymers, associated with photocleavage by UV irradiation, and their optical patterning are investigated. The deprotection reaction has been monitored by UV and FTIR spectroscopy, contact angle measurements, and X-ray photoelectron spectroscopy, revealing the photoremoval of the protecting p-methoxyphenacyl group in high yields under mild conditions. Parallel and serial patterning of the films has been performed by selective irradiation through optical masks and by laser irradiation via fiber tips of a scanning near-field optical microscope, respectively. By irradiation of photolabile protected functional groups, free carboxylic groups become exposed to the surface with which fluorescent dyes and proteins can be associated specifically.  相似文献   

16.
Hydrophobic–hydrophilic block copolymers were prepared by “living” anionic polymerization. They consist of polystyrene and poly(ethylene oxide) blocks, and are soluble in water. Their interfacial properties were investigated, employing aqueous solutions. The block copolymers lowered the surface tension of water in analogy with the low molecular weight surfactants such as sodium lauryl sulfate and heptaethylene oxide n-dodecyl ether. Their aqueous solutions exhibited solubilization properties differing from those of polyethylene glycol. Therefore, it is thought that the polystyrene blocks produce solubilization phenomena. In samples of the same styrene content, the precipitation temperature of a high molecular weight copolymer in water was lower than that of a low molecular weight copolymer at the same concentration in the same solvent. The surface tension and precipitation temperature of aqueous solutions seem to be influenced by molecular weight and composition.  相似文献   

17.
There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.  相似文献   

18.
Adsorption of well-defined fluorinated polymers onto clinically relevant poly(tetrafluoroethylene) (PTFE) substrates offers an attractive method for modifying the surface properties of chemically inert PTFE. Reversible addition-fragmentation chain transfer (RAFT) was successfully used for synthesis of the polymers in this study: the homopolymers poly(2,3,4,5,6-pentafluorostyrene) (PFS), poly(2,2,3,3-tetrafluoropropyl acrylate) (PTFPA), and poly(2,2,3,3-tetrafluoropropyl methacrylate) (PTFPMA) as well as their block copolymers with tert-butyl acrylate ( (t)BA). Water-soluble blocks were synthesized through the hydrolysis of the t-butyl side groups of P( (t)BA) to the corresponding carboxylic acid. Adsorption of selected polymers onto PTFE from a series of solvents (methyl ethyl ketone (MEK), dimethylformamide (DMF), fluorobenzene (FB), dichloromethane (DCM)) was investigated using X-ray photoelectron spectroscopy (XPS) and sessile water drop measurements. The three homopolymers studied all adsorbed irreversibly (i.e., were not removed by washing) from organic solvents at ambient temperature. PFS displayed the highest adsorption, and was attributed to strong hydrophobic interactions. From angle-resolved XPS it was concluded that PFS became impregnated into the PTFE substrate down to depths of 100 A when using FB as a solvent. The carboxylic acid-containing block copolymers adsorbed more effectively from DMF (a good solvent for the poly(acrylic acid) block) compared to MEK. The resulting modified PTFE substrates displayed high stability with respect to desorption in aqueous solution, yet conformational changes of the adsorbed polymer resulted in a switchable hydrophobic-hydrophilic surface (in air or water, respectively). These results highlight the success of a facile and simple approach to irreversibly adsorb functional polymers to a nonfunctional fluorinated surface.  相似文献   

19.
A block copolymer containing a rodlike block is studied for its adsorption and formation of nanostructured thin films on the substrate surface. The block copolymer is poly(styrene-b-3-triethoxysilylpropylisocyanate) (PS-b-PIC) of which the PIC chain consists of repeating amide units with triethoxysilyl side groups. As the copolymer chains are adsorbed onto silica surfaces, the PIC blocks pack laterally on the plane in a smectic manner, and the PS chains segregate along the ordered PIC chains, resulting in stripe patterns. The width of the stripes formed on the silica surface appeared to be much larger that on the carbon surface. This was accounted for by the bilayered smectic packing of the rod blocks that is induced by rod-surface attractive interaction. The periodicity of the stripe pattern on the carbon surface indicates that interdigitated packing is preferred by the copolymers on the hydrophobic surface in a manner similar to those in the bulk state of rod-coils. Excess rod-coils on the bilayered smectic layer resulted in a terraced morphology due to large difference in the periodicity between the bilayered smectic layer at the substrate surface and the interdigitated smectic layer in the bulk.  相似文献   

20.
The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号