首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through X‐ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near‐edge X‐ray absorption fine structure (NEXAFS) and resonant inelastic X‐ray scattering (RIXS) measurements at the nitrogen K‐edge of para‐aminobenzoic acid reveal both pH‐ and solvent‐dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.  相似文献   

2.
In solid‐state science, most changing phenomena have been mysterious. Furthermore, the changes in chemical composition should be added to mere physical changes to also cover the chemical changes. Here, the first success in characterizing the nature of gas inclusion in a single crystal is reported. The gas inclusion process has been thoroughly investigated by in situ optical microscopy, single‐crystal X‐ray diffraction analyses, and gas adsorption measurements. The results demonstrated an inclusion action of a first‐order transition behavior induced by a critical concentration on the phase boundary. The transfer of phase boundary and included gas are strongly related. This relationship can generate the dynamic features hidden in the inclusion phenomena, which can lead to the guest capturing and transfer mechanism that can apply to spatiotemporal inclusion applications by using host solids.  相似文献   

3.
N‐Decanoyl‐L ‐alanine (DA) was mixed with either colorless 4,4′‐bipyridine (BP) or various derivatives such as chromogenic oligo(p‐phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt‐type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two‐component mixtures could be modulated by variation of the position of the ′′N′′ atom of the end pyridyl groups in OPVs. The presence of acid–base interactions in the self‐assembly of these two‐component systems leading to gelation was probed in detail by using stoichiometry‐dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature‐dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J‐type aggregation mode of these gelator molecules during the sol‐to‐gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two‐component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid‐phase behavior of such two‐component mixtures (acid/base=2:1) varied significantly upon changing the proton‐acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.  相似文献   

4.
Phase behaviour of hydrogen‐bonded multicomponent mixtures of bipyridine, dodecyloxybenzoic acid and dicarboxylic acids with poly(acrylic acid) were studied at different compositions and temperatures. It was found that in certain composition ranges, the mixtures form a homogeneous liquid crystalline phase of smectic type with an unusually high enthalpy of transition into the isotropic state. The nature of the anisotropic phase observed in the polymers is discussed. The phase behaviour was studied using IR spectroscopy, differential scanning calorimetry and X‐ray structure analysis.  相似文献   

5.
A cascade reaction that generates pyrrolo‐ and pyridoindoline motifs from isocyanide precursors under phase‐transfer conditions is described. This transformation proceeds at room temperature in the presence of a quaternary ammonium catalyst and base to generate functionalized products containing an all‐carbon quaternary stereocentre. Quantum chemical calculations demonstrated that intramolecular general acid catalysis plays a key accelerating role through stabilization of developing charge in the transition state, and that the reaction is best described as a 5‐endo dig cyclization, rather than an anionic 6π electrocyclization. Investigations employing chiral phase‐transfer catalysts have given promising selectivities to date.  相似文献   

6.
The changes in the electronic structure of LiMn0.6Fe0.4PO4 nanowires during discharge processes were investigated by using ex situ soft X‐ray absorption spectroscopy. The Fe L ‐edge X‐ray absorption spectrum attributes the potential plateau at 3.45 V versus Li/Li+ of the discharge curve to a reduction of Fe3+ to Fe2+. The Mn L ‐edge X‐ray absorption spectra exhibit the Mn2+ multiplet structure throughout the discharge process, and the crystal‐field splitting was slightly enhanced upon full discharge. The configuration‐interaction full‐multiplet calculation for the X‐ray absorption spectra reveals that the charge‐transfer effect from O 2p to Mn 3d orbitals should be considerably small, unlike that from the O 2p to Fe 3d orbitals. Instead, the O K‐edge X‐ray absorption spectrum shows a clear spectral change during the discharge process, suggesting that the hybridization of O 2p orbitals with Fe 3d orbitals contributes essentially to the reduction.  相似文献   

7.
Direct, real‐time analytical techniques that provide high‐resolution information on the chemical composition and submicrometer structure of various polymer micro‐ and nanoparticles are in high demand in a range of life science disciplines. Synchrotron‐based scanning transmission X‐ray microspectroscopy (STXM) combines both local‐spot chemical information (assessed via near‐edge X‐ray absorption fine structure spectroscopy) and imaging with resolution of several tens of nanometers, and thus can yield new insights into the nanoscale properties of these materials. Furthermore, this method allows in situ examination of soft‐matter samples in aqueous/gaseous environments and under external stimuli, such as temperature, pressure, ultrasound, and light irradiation. This Minireview highlights some recent progress in the application of the STXM technique to study the temperature‐dependent behavior of polymer core–shell microcapsules and to characterize the physicochemical properties of the supporting shells of gas‐filled microbubbles in their natural hydrated state.  相似文献   

8.
Dibromotetracene molecules are deposited on the Cu(110) surface at room temperature. The complex evolution of this system has been monitored at different temperatures (i.e., 298, 523, 673, and 723 K) by means of a variety of complementary techniques that range from STM and temperature‐programmed desorption (TPD) to high‐resolution X‐ray spectroscopy (XPS) and near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS). State‐of‐the‐art density‐functional calculations were used to determine the chemical processes that take place on the surface. After deposition at room temperature, the organic molecules are transformed into organometallic monomers through debromination and carbon‐radical binding to copper adatoms. Organometallic dimers, trimers, or small oligomers, which present copper‐bridged molecules, are formed by increasing the temperature. Surprisingly, further heating to 673 K causes the formation of elongated chains along the Cu(110) close‐packed rows as a consequence of radical‐site migration to the thermodynamically more stable molecule heads. Finally, massive dehydrogenation occurs at the highest temperature followed by ring condensation to nanographenic patches. This study is a paradigmatic example of how intermolecular coupling can be modulated by the stepwise control of a simple parameter, such as temperature, through a sequence of domino reactions.  相似文献   

9.
The 1D complex [(CuL0.5H2O) ? H2O]n ( 1 ) (H4L=2,2′‐bipyridine‐3,3′,6,6′‐tetracarboxylic acid) undergoes an irreversible thermally triggered single‐crystal‐to‐single‐crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5]n ( 2 ). This SCSC structural transformation was confirmed by single‐crystal X‐ray diffraction analysis, thermogravimetric (TG) analysis, powder X‐ray diffraction (PXRD) patterns, variable‐temperature powder X‐ray diffraction (VT–PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2 , though the initial 1D chain is still retained as in complex 1 , accompanied with the Cu‐bound H2O removed and new O(carboxyl)?Cu bond forming, the coordination geometries around the CuII ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1‐O‐C‐O‐Cu4 bridge. The catalytic results demonstrate that, even though both solid‐state materials present high catalytic activity for the synthesis of 2‐imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2 . In addition, a possible pathway for the SCSC structural transformations is proposed.  相似文献   

10.
We present an in situ small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) and quick‐scanning extended X‐ray absorption fine‐structure (QEXAFS) spectroscopy study on the crystallization of the metal–organic framework ZIF‐7. In combination with DFT calculations, the self‐assembly and growth of ZIF‐7 microrods together with the chemical function of the crystal growth modulator (diethylamine) are revealed at all relevant length scales, from the atomic to the full crystal size.  相似文献   

11.
Here it is reported that crystals of an enantiopure [7]helquat salt undergo reversible thermal solid–solid phase transition at 404 K. Differential scanning calorimetry (DSC), capillary electrophoresis (CE), and X‐ray diffraction analysis were used to unravel the mechanistic details of this process. The single‐crystal‐to‐single‐crystal course enabled direct monitoring of the structural changes by in situ variable‐temperature X‐ray diffraction, thus providing the first direct evidence of a solid phase transition in a helicene‐like compound.  相似文献   

12.
Solid‐state reactions have been rapidly gaining popularity in organic chemistry owing to their simplicity, efficiency, and selectivity compared to liquid‐phase reactions. Herein, we describe the formation of superstructures through the solid‐state reaction of an organic single‐crystal. The superstructure of 5,5′,5′′‐(1,3,5‐triazine‐2,4,6‐triyl)triisophthalonitrile (TIPN) can be formed by cyclotrimerization of 1,3,5‐tricyanobenzene (TCB) single crystals. The TIPN superstructure was confirmed by single crystal X‐ray diffraction and visualized by transmission electron microscopy. The superstructure has hexagonally packed 1‐dimensional (1D) channels along the crystal axis. Furthermore, the superstructure arises from interdigitated nitrile interactions in the crystal lattice, and thus has electron‐beam tolerance and very high thermal stability.  相似文献   

13.
Racemic 2,4(6)‐di‐O‐benzoyl‐myo‐inositol 1,3,5‐orthoformate, C21H18O8, (1) , shows a very efficient intermolecular benzoyl‐group migration reaction in its crystals. However, the presence of 4,4′‐bipyridine molecules in its cocrystal, C21H18O8·C10H8N2, (1)·BP , inhibits the intermolecular benzoyl‐group transfer reaction. In (1) , molecules are assembled around the crystallographic twofold screw axis (b axis) to form a helical self‐assembly through conventional O—H...O hydrogen‐bonding interactions. This helical association places the reactive C6‐O‐benzoyl group (electrophile, El) and the C4‐hydroxy group (nucleophile, Nu) in proximity, with a preorganized El...Nu geometry favourable for the acyl transfer reaction. In the cocrystal (1)·BP , the dibenzoate and bipyridine molecules are arranged alternately through O—H...N interactions. The presence of the bipyridine molecules perturbs the regular helical assembly of the dibenzoate molecules and thus restricts the solid‐state reactivity. Hence, unlike the parent dibenzoate crystals, the cocrystals do not exhibit benzoyl‐transfer reactions. This approach is useful for increasing the stability of small molecules in the crystalline state and could find application in the design of functional solids.  相似文献   

14.
Submono‐, mono‐ and multilayers of the Fe(II) spin‐crossover (SCO) complex [Fe(bpz)2(phen)] (bpz=dihydrobis(pyrazolyl)borate, phen=1,10‐phenanthroline) have beenprepared by vacuum deposition on Au(111) substrates and investigated with near edge X‐ray absorption fine structure (NEXAFS) spectroscopy and scanning tunneling microscopy (STM). As evidenced by NEXAFS, molecules of the second layer exhibit a thermal spin crossover transition, although with a more gradual characteristics than in the bulk. For mono‐ and submonolayers of [Fe(bpz)2(phen)] deposited on Au(111) substrates at room temperature both NEXAFS and STM indicate a dissociation of [Fe(bpz)2(phen)] on Au(111) into four‐coordinate complexes, [Fe(bpz)2], and phen molecules. Keeping the gold substrate at elevated temperatures ordered monolayers of intact molecules of [Fe(bpz)2(phen)] are formed which can be spin‐switched by electron‐induced excited spin‐state trapping (ELIESST).  相似文献   

15.
Demands for large‐scale energy storage systems have driven the development of layered transition‐metal oxide cathodes for room‐temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered‐tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered‐tunnel electrode shows outstanding electrochemical performance in sodium half‐cell system and excellent compatibility with hard carbon anode in sodium full‐cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium‐ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high‐energy X‐ray diffraction and ex situ X‐ray absorption spectroscopy as well as operando X‐ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

16.
A series of pyrene‐based Y‐shaped blue emitters, namely, 7‐tert‐butyl‐1,3‐diarylpyrenes 4 were synthesized by the Suzuki cross‐coupling reaction of 7‐tert‐butyl‐1,3‐dibromopyrene with a variety of p‐substituted phenylboronic acids in good to excellent yields. These compounds were fully characterized by X‐ray crystallography, UV/Vis absorption and fluorescence spectroscopy, DFT calculations, thermogravimetric analysis, and differential scanning calorimetry. Single‐crystal X‐ray analysis revealed that the Y‐shaped arylpyrenes exhibited a low degree of π stacking owing to the steric effect of the bulky tert‐butyl group in the pyrene ring at the 7‐position, and thus, the intermolecular π–π interactions were effectively suppressed in the solid state. Despite the significantly twisted nonplanar structures, these molecules still displayed efficient intramolecular charge‐transfer emissions with clear solvatochromic shifts on increasing solvent polarity. An intriguing fact is that all of these molecules show highly blue emissions with excellent quantum yields in the solid state. Additionally, the two compounds containing the strongest electron‐accepting groups, CN ( 4d ) and CHO ( 4f ), possess high thermal stability, which, together with their excellent solid‐state fluorescence efficiency, makes them promising potential blue emitters in organic light‐emitting device applications.  相似文献   

17.
The first syntheses of hybrid structures that lie between subphthalocyanines and subporphyrins are reported. The versatile single‐step synthetic method uses a preformed aminoisoindolene to provide the bridging methine unit and its substituent while trialkoxyborates simultaneously act as Lewis acid, template, and provider of the apical substituent. The selection of each component therefore allows for the controlled formation of diverse, differentially functionalized systems. The new hybrids are isolated as robust, pure materials that display intense absorption and emission in the mid‐visible region. The new compounds are further characterized in solution and solid state by variable‐temperature NMR spectroscopy and X‐ray crystallography, respectively.  相似文献   

18.
Ruthenium(III)‐substituted α‐Keggin‐type silicotungstates with pyridine‐based ligands, [SiW11O39RuIII(Py)]5?, (Py: pyridine ( 1 ), 4‐pyridine‐carboxylic acid ( 2 ), 4,4′‐bipyridine ( 3 ), 4‐pyridine‐acetamide ( 4 ), and 4‐pyridine‐methanol ( 5 )) were prepared by reacting [SiW11O39RuIII(H2O)]5? with the pyridine derivatives in water at 80 °C and then isolated as their hydrated cesium salts. These compounds were characterized using cyclic voltammetry (CV), UV/Vis, IR, and 1H NMR spectroscopy, elemental analysis, titration, and X‐ray absorption near‐edge structure (XANES) analysis (Ru K‐edge and L3‐edge). Single‐crystal X‐ray analysis of compounds 2 , 3 , and 4 revealed that RuIII was incorporated in the α‐Keggin framework and was coordinated by pyridine derivatives through a Ru? N bond. In the solid state, compounds 2 and 3 formed a dimer through π? π interaction of the pyridine moieties, whereas they existed as monomers in solution. CV indicated that the incorporated RuIII–Py was reversibly oxidized into the RuIV–Py derivative and reduced into the RuII–Py derivative.  相似文献   

19.
Through a solid‐state reaction, a practically phase pure powder of Ba3V2S4O3 was obtained. The crystal structure was confirmed by X‐ray single‐crystal and synchrotron X‐ray powder diffraction (P63, a=10.1620(2), c=5.93212(1) Å). X‐ray absorption spectroscopy, in conjunction with multiplet calculations, clearly describes the vanadium in charge‐disproportionated VIIIS6 and VVSO3 coordinations. The compound is shown to be a strongly correlated Mott insulator, which contradicts previous predictions. Magnetic and specific heat measurements suggest dominant antiferromagnetic spin interactions concomitant with a weak residual ferromagnetic component, and that intrinsic geometric frustration prevents long‐range order from evolving.  相似文献   

20.
Syntheses and Structures of Bis(4,4′‐t‐butyl‐2,2′‐bipyridine) Ruthenium(II) Complexes with functional Derivatives of Tetramethyl‐bibenzimidazole [(tbbpy)2RuCl2] reacts with dinitro‐tetramethylbibenzimidazole ( A ) in DMF to form the complex [(tbbpy)2Ru( A )](PF6)2 ( 1a ) (tbbpy: bis(4,4′‐t‐butyl)‐2,2′bipyridine). Exchange of the two PF6? anions by a mixture of tetrafluor‐terephthalat/tetrafluor‐terephthalic acid results in the formation of 1b in which an extended hydrogen‐bonded network is formed. According to the 1H NMR spectra and X‐ray analyses of both 1a and 1b , the two nitro groups of the bibenzimidazole ligand are situated at the periphery of the complex in cis position to each other. Reduction of the nitro groups in 1a with SnCl2/HCl results in the corresponding diamino complex 2 which is a useful starting product for further functionalization reactions. Substitution of the two amino groups in 2 by bromide or iodide via Sandmeyer reaction results in the crystalline complexes [(tbbpy)2Ru( C )](PF6)2 and [(tbbpy)2Ru( D )](PF6)2 ( C : dibromo‐tetrabibenzimidazole, D : diiodo‐tetrabibenzimidazole). Furthermore, 2 readily reacts with 4‐t‐butyl‐salicylaldehyde or pyridine‐2‐carbaldehyde under formation of the corresponding Schiff base RuII complexes 5 and 6 . 1H NMR spectra show that the substituents (NH2, Br, I, azomethines) in 2 ‐ 6 are also situated in peripheral positions, cis to each other. The solid state structure of both 2 , and 3 , determined by X‐ray analyses confirm this structure. In addition, the X‐ray diffraction analyses of single crystals of the complexes [(tri‐t‐butyl‐terpy)(Cl)Ru( A )] ( 7 ) and [( A )PtCl2] ( 8 ) display also that the nitro groups in these complexes are in a cis‐arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号