首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

2.
The structure of the electromagnetic electrode layers that are produced in flows across a magnetic field by a completely ionized and inviscid plasma with good conductivity and a high magnetic Reynolds number is examined in a linear approximation. Flow past a corrugated wall and flow in a plane channel of slowly varying cross section with segmented electrodes are taken as specific examples. The possibility is demonstrated of the formation of nondissipative electrode layers with thicknesses on the order of the Debye distance or electron Larmor radius and of dissipative layers with thicknesses on the order of the skin thickness, as calculated from the diffusion rate in a magnetic field [2].In plasma flow in a transverse magnetic field, near the walls, along with the gasdynamie boundary layers, which owe their formation to viscosity, thermal conductivity, etc. (because of the presence of electromagnetic fields, their structures may vary considerably from that of ordinary gasdynamic layers), proper electromagnetic boundary layers may also be produced. An example of such layers is the Debye layer in which the quasi-neutrality of the plasma is upset. No less important, in a number of cases, is the quasi-neutral electromagnetic boundary layer, in which there is an abrupt change in the frozen-in parameter k=B/p (B is the magnetic field and p is the density of the medium). This layer plays a special role when we must explicitly allow for the Hall effect and the related formation of a longitudinal electric field (in the direction of the veloeiryv of the medium). We will call this the magnetic layer. The magnetic boundary layer can be dissipative as well as noudissipative (see below). The dissipative magnetic layer has been examined in a number of papers: for an incompressible medium with a given motion law in [1], for a compressible medium with good conductivity in [2], and with poor conductivity in [3]. In the present paper, particular attention will be devoted to nondissipative magnetic boundary layers.  相似文献   

3.
Equations are derived for the gasdynamics of a dense plasma confined by a multiple-mirror magnetic field. The limiting cases of large and small mean free paths have been analyzed earlier: 0 and k, where is the length of an individual mirror machine, 0 is the size of the mirror, and k is the mirror ratio. The present work is devoted to a study of the intermediate range of mean free paths 0 k. It is shown that in this region of the parameters the process of expansion of the plasma has a diffusional nature, and the coefficients of transfer of the plasma along the magnetic field are calculated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 14–19, November–December, 1974.The authors thank D. D. Ryutov for the statement of the problem and interest in the work.  相似文献   

4.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

5.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

6.
7.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

8.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

9.
ONTHEUNIFICATIONOFTHEHAMILTONPRINCIPLESINNONHOLONOMICSYSTEMANDINHOLONOMICSYSTEM(梁立孚)(韦扬)ONTHEUNIFICATIONOFTHEHAMILTONPRINCIPL...  相似文献   

10.
Zusammenfassung Zur Berechnung der dynamischen Idealviskosität Ideal (T) und der Idealwärmeleitfähigkeit ideal (T) benötigt man die kritische TemperaturT kr, das kritische spezifische Volum kr, die MolmasseM, den kritischen Parameter kr und die molare isochore WärmekapazitätC v(T). Sowohl das theoretisch, als auch das empirisch abgeleitete erweiterte Korrespondenzgesetz ergeben eine für praktische Zwecke ausreichende Genauigkeit für die Meßwertwiedergabe, die bei den assoziierenden Stoffen und den Quantenstoffen jedoch geringer ist als bei den Normalstoffen.
The extended correspondence law for the ideal dynamic viscosity and the ideal thermal conductivity of pure substances
For the calculation of the ideal dynamic viscosity Ideal (T) and the ideal thermal conductivity ideal (T) the critical temperatureT kr, the critical specific volumev kr, the molecular massM, the critical parameter kr, and the molar isochoric heat capacityC v(T) is needed. Not only the theoretically determined but also the empirically determined extended correspondence law gives for practical use a good representation of the measured data, which for the associating substances and the quantum substances is not so good as for the normal substances.
  相似文献   

11.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

12.
Numerical methods are used to investigate the transient, forced convection heat/mass transfer from a finite flat plate to a steady stream of viscous, incompressible fluid. The temperature/concentration inside the plate is considered uniform. The heat/mass balance equations were solved in elliptic cylindrical coordinates by a finite difference implicit ADI method. These solutions span the parameter ranges 10 Re 400 and 0.1 Pr 10. The computations were focused on the influence of the product (aspect ratio) × (volume heat capacity ratio/Henry number) on the heat/mass transfer rate. The occurrence on the plates surface of heat/mass wake phenomena was also studied.  相似文献   

13.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

14.
The paper proposes a heuristic approach to constructing exact solutions of the hydrodynamic equations based on the specificity of these equations. A number of systems of hydrodynamic equations possess the following structure: they contain a reduced system of n equations and an additional equation for an extra function w. In this case, the reduced system, in which w = 0, admits a Lie group G. Taking a certain partially invariant solution of the reduced system with respect to this group as a seed:rdquo; solution, we can find a solution of the entire system, in which the functional dependence of the invariant part of the seed solution on the invariants of the group G has the previous form. Implementation of the algorithm proposed is exemplified by constructing new exact solutions of the equations of rotationally symmetric motion of an ideal incompressible liquid and the equations of concentrational convection in a plane boundary layer and thermal convection in a rotating layer of a viscous liquid.  相似文献   

15.
Turbulent tube flow and the flow through a porous medium of aqueous hydroxypropylguar (HPG) solutions in concentrations from 100 wppm to 5000 wppm is investigated. Taking the rheological flow curves into account reveals that the effectiveness in turbulent tube flow and the efficiency for the flow through a porous medium both start at the same onset wall shear stress of 1.3 Pa. The similarity of the curves = ( w ) and = ( w ), respectively, leads to a simple linear relation / =k, where the constantk or proportionality depends uponc. This offers the possibility to deduce (for turbulent tube flow) from (for flow through a porous medium). In conjunction with rheological data, will reveal whether, and if yes to what extent, drag reduction will take place (even at high concentrations).The relation of our treatment to the model-based Deborah number concept is shown and a scale-up formula for the onset in turbulent tube flow is deduced as well.  相似文献   

16.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

17.
Existence theorem for a minimum problem with free discontinuity set   总被引:6,自引:0,他引:6  
We study the variational problem Where is an open set in n ,n2gL q () L (), 1q<+, O<, <+ andH n–1 is the (n–1)-dimensional Hausdorff Measure.  相似文献   

18.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

19.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

20.
The problem of classification of ordinary differential equations of the form y = f(x,y) by admissible local Lie groups of transformations is solved. Standard equations are listed on the basis of the equivalence concept. The classes of equations admitting a oneparameter group and obtained from the standard equations by invariant extension are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号