首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and quartz, for the growth of ZnO nanowires with the uniformly small diameter. Scanning electron microscopy (SEM) reveals that different nanostructures including nanobelts, nanowires and microplates have been synthesized depending on types of substrates and gas flow. Observation by transmission electron microscopy (TEM) reveals that the nanostructures are grown by VLS mechanism. The field emission properties of ZnO nanowires grown on the Si(1 0 0) substrate, in various vacuum gaps, were characterized in a UHV chamber at room temperature. Field emission (FE) characterization shows that the turn-on field and the field enhancement factor (β) decrease and increases, respectively, when the vacuum gap (d) increase from 100 to 300 μm. The turn-on emission field and the enhancement factor of ZnO nanowires are found 10 V/μm and 1183 at the vacuum gap of 300 μm.  相似文献   

2.
The structural and optical properties of ZnO films deposited on Si substrate following rapid thermal annealing (RTA) have been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) measurements. After RTA treatment, the XRD spectra have shown an effective relaxation of the residual compressive stress, an increase of the intensity and narrowing of the full-width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the as-grown ZnO film. AFM images show roughening of the film surface due to increase of grain size after RTA. The PL spectrum reveals a significant improvement in the UV luminescence of ZnO films following RTA at 800 °C for 1 min.  相似文献   

3.
Nanostructured ZnO thin films were deposited on Si(1 1 1) and quartz substrate by sol-gel method. The thin films were annealed at 673 K, 873 K, and 1073 K for 60 min. Microstructure, surface topography, and water contact angle of the thin films have been measured by X-ray diffractometer, atomic force microscopy, and water contact angle apparatus. XRD results showed that the ZnO thin films are polycrystalline with hexagonal wurtzite structure. AFM studies revealed that rms roughness changes from 2.3 nm to 7.4 nm and the grain size grow up continuously with increasing annealing temperature. Wettability results indicated that hydrophobicity of the un-irradiated ZnO thin films enhances with annealing temperature increase. The hydrophobic ZnO surfaces could be reversibly switched to hydrophilic by alternation of UV illumination and dark storage (thermal treatment). By studying the magnitude and the contact angle reduction rate of the light-induced process, the contribution of surface roughness is discussed.  相似文献   

4.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

5.
Colloidal ZnO nanoparticles were prepared in ethanol solutions and annealed at different temperatures (150-500 °C) subsequently. The size, morphology and surface characteristics of ZnO nanoparticles were examined by TEM, XRD, UV-vis absorption spectrum and FTIR technique. With the increase of annealing temperature, the mean size of ZnO nanoparticles was increased from 10 to 90 nm, while the bonding structure of acetate groups coordinating with zinc ions evolved from unidentate to bidentate type. The UV-induced degradation results of methyl orange verified that the photocatalytic process of colloidal ZnO nanoparticles without annealing and the sample annealed at 150 °C was unstable for the weakly bonding unidentate type of acetate groups. However, the sample annealed above 150 °C demonstrated their photocatalytic stability in the whole catalytic process for the stable bidentate bonding type of acetate groups. In addition, the change of particle size in the annealing process significantly affected the catalytic activity of photocatalysts. ZnO nanoparticles annealed at 300 °C would be a prospective photocatalysts with a high catalytic activity and stability compared with the other samples.  相似文献   

6.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

7.
Surface-functionalized zinc oxide (ZnO) nanoparticles were synthesized with ethylene diamine tetraacetic acid (EDTA) as a modification agent, which were used as adsorbents in the adsorption of Cu2+ at certain conditions. The transmission electron microscopy (TEM) results show that the average size of ZnO particles is about 45 nm, and it exhibits hexagonal wurtzite structure. Fourier transform infrared (FTIR) spectra reveal that the EDTA species are chemically bonded on the surface of ZnO. Compared with bare ZnO particles, the functionalized ZnO nanoparticles have a better activity in the Cu2+ adsorption. The maximum adsorption capacity of functionalized ZnO nanoparticles is 20.97 mg/g, while it is 17.93 mg/g for the bare ZnO. The adsorption isotherm of bare ZnO particles is in accordance with the Freundlich model, and the chemical adsorption is in a dominant position in the adsorption process of Cu2+ on functionalized ZnO particles.  相似文献   

8.
Intense band-edge photoluminescence is observed from ZnO nanocrystals with an average diameter of about 3 nm. It is found that the growth from high temperature (70 °C) precursor solution and succeeding surface passivation by MgO layer together lead to a five times enhancement of band-edge luminescence, in comparison to those grown by conventional low-temperature method without surface passivation. It is also found that above-band-gap illumination on the nanocrystals further enhances the luminescence intensity by five times. The strong photo-enhancement is considered to be aided by the reduction of surface non-radiative recombination path.  相似文献   

9.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

10.
Zinc oxide thin films (ZnO, ZnO:Li, ZnO:Al) were deposited on glass substrates by a sol-gel technique. Zinc acetate, lithium acetate, and aluminum chloride were used as metal ion sources in the precursor solutions. XRD analysis revealed that Li doped and undoped ZnO films formed single phase zincite structure in contrast to Al:ZnO films which did not fully crystallize at the annealing temperature of 550 °C. Crystallized films had a grain size under 50 nm and showed c-axis grain orientation. All films had a very smooth surface with RMS surface roughness values between 0.23 and 0.35 nm. Surface roughness and optical band tail values increased by Al doping. Compared to undoped ZnO films, Li doping slightly increased the optical band gap of the films.  相似文献   

11.
The intensity of optically stimulated luminescence may be decreased to a slow or medium component of its decay curve by optical bleaching, that is, by prolonged exposure of the luminescent sample to stimulating light. In this paper, we report on the influence of irradiation and measurement temperature on luminescence lifetimes as well as on the effect of measurement temperature on luminescence intensity in annealed natural quartz from Nigeria. Measurements were carried out in the slow component region using time-resolved optical stimulation at 470 nm on samples annealed at 500 and 600 °C. Luminescence lifetimes were determined from the resultant time-resolved luminescence spectra by analysing the portion of each spectrum after the stimulating light pulse of duration 11 μs. In preparatory tests, the influence of the duration of optical bleaching on lifetimes was investigated. It was found that lifetimes in samples annealed at 500 °C are independent of the duration of optical bleaching, whereas lifetimes in quartz annealed at 600 °C are affected, decreasing towards a constant value with duration of bleaching. Concerning measurements in the slow-component region, lifetimes were found to decrease with irradiation dose for samples annealed at either 500 or 600 °C. The temperature dependence of lifetimes in both sets of quartz is similar with lifetimes constant at about 36 μs between 20 and 120 °C, but decreasing consistently from then on to about 5 μs at 200 °C, the maximum measurement temperature used in experiments. The luminescence intensity was observed to typically go through a peak as the stimulation temperature was increased from 20 to 200 °C, following a brief initial decrease, a change better exemplified in the quartz annealed at 600 °C. The initial decrease in luminescence intensity is attributed to the dominance of optical stimulation over thermal stimulation. On the other hand, the subsequent change of luminescence intensity with temperature is discussed as evidence of thermal assistance to optical stimulation, initially with activation energy of 0.27±0.07 eV and of thermal quenching subsequently with activation energy equal to 0.93±0.23 eV for samples annealed at either 500 or 600 °C. The temperature dependence of lifetimes is explained as showing increased thermal effect on lifetimes with activation energy values within 0.83±0.01 eV. On the other hand, the influence of irradiation on lifetimes is accounted for in terms of an energy band model for quartz consisting of three luminescence centres and one non-radiative recombination centre.  相似文献   

12.
Zinc oxide (ZnO) and lead sulphide (PbS) nanoparticles separately synthesized by a precipitation method were combined by an ex situ route to prepare ZnO-PbS nanocomposites with different molar ratios of ZnO and PbS. The structure and morphology of the ZnO, PbS and ZnO-PbS samples were analyzed with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A UV-vis spectrophotometer was used to collect the absorption and 325 nm He-Cd and 488 nm Ar lasers were used to collect the photoluminescence data from the samples. ZnO nanoparticles showed a broad and stable emission peak at ∼570 nm, while a strongly quantum confined emission from PbS nanoparticles was detected at ∼1344-1486 nm. The ZnO-PbS nanocomposites exhibited dual emission in the visible and near-infrared (NIR) regions that is associated with defects and recombination of excitonic centres in the ZnO and PbS nanoparticles, respectively. The PL intensity of the visible emission from the ZnO-PbS nanocomposite was shown to increase when the ZnO to PbS molar ratio was 5:1 and the emission was almost quenched at molar ratios of 1:1 and 1:5. For different molar ratios of ZnO to PbS, the PL intensity of the NIR emission from the ZnO-PbS nanocomposites was more intense than that of PbS nanoparticles.  相似文献   

13.
The luminescence properties of Sm(TTFA)3 complex in presence of the silver (Ag) nanoparticles with size ranged from 80 nm to 120 nm and different shapes (nanorod, cube, tetrahedron, and nanowire) were investigated at two different excitation wavelengths of 397 nm and 350 nm, which was resonant and off-resonant excitation, respectively. The luminescence enhancement for the resonant excitation was much greater than that for the off-resonant excitation. The electric and magnetic dipole transitions were affected by the Ag nanoparticles and the results showed that their emission enhancement depended on the balance of the overlap between the emission wavelengths and the localized surface plasmon resonant of nanoparticles and their sensibility to the variation of local environments. The enhancement and quenching of the luminescence were both observed at the resonant excitation.  相似文献   

14.
Polyfluorene-based blue light-emitting devices suffer from the shortcomings of low stability, drastic loss of quantum yield and poor color purity. To find out the solution, we use silver nanoparticles for enhancement of photoluminescence of polyfluorene copolymer (PCFOz) through localized surface plasmon resonance (LSPR) coupling effect. The photoluminescence from PCFOz can be concentrated down to nanoscale, realizing a high spatial selectivity of the fluorescence enhancement process. PL emission of conjugated polymer is blueshifted about 8 nm from the peak emission of 433 nm for the neat PCFOz film to around 425 nm for the Ag/PCFOz composite film. The full width at half maximum of PCFOz is reduced from 88 to 60 nm. Absorbance spectra and time resolved photoluminescence measurements further demonstrate that both absorption intensity and recombination rate of PCFOz increase due to strong LSPR-excitons coupling. Optical properties of such plasmon-enhanced organic light emitters were also studied by temperature-dependent PL spectroscopy from 10 to 200 K. In comparison with bare PCFOz, the LSPR induced emission enhancement ratio significantly increases with increasing temperature. These results are believed to be important for the development of highly efficient blue organic light-emitting devices based on all-solution processing.  相似文献   

15.
Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.  相似文献   

16.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

17.
We report a novel method of growing red luminescent (635 nm) Mn-doped CdS (CdS:Mn) nanoparticles capped by an inorganic shell of Mn(OH)2. CdSO4, Na2S2O3 and Mn(NO3)2 were used as the precursors, and thioglycerol (C3H8O2S) was employed as the capping agent and also the catalyst of the reaction. Using these materials resulted in very slow rate of the reaction and particles growth. The self-assembled one-pot process was performed at pH of 8 and Mn:Cd ratio of 10, and took about 10 days for completion. CdS:Mn nanoparticles are slowly formed in the first day of the process; however, the luminescence is weak. After 7 days, the solution turns white turbid through the formation of additional particles, which precipitate on the walls on the next day. At this stage, a relatively strong red luminescence at 635 nm appears from transparent solution of the CdS:Mn nanoparticles. The white deposit on the walls turns to dark-brown color and luminescence increases on the 9th day. Finally, the CdS:Mn nanoparticles agglomerate and precipitate out of the solution on 10th day. X-ray diffraction and optical spectroscopy showed crystalline phase CdS nanoparticles with an average size of 3.6 nm. We explain the luminescence enhancement based on the formation of a Mn(OH)2 shell on the surface of the CdS:Mn nanoparticles during the precipitation stage. This can passivate the S dangling bonds located on the particles surface. As the surface Cd sites are previously capped with thioglycerol molecules, a complete surface passivation is achieved and results in emergence of high-intensity luminescence.  相似文献   

18.
Zinc oxide nanoparticles were synthesized using chemical method in alcohol base. During synthesis three capping agents, i.e. triethanolamine (TEA), oleic acid and thioglycerol, were used and the effect of concentrations was analyzed for their effectiveness in limiting the particle growth. Thermal stability of ZnO nanoparticles prepared using TEA, oleic acid and thioglycerol capping agents, was studied using thermogravimetric analyzer (TGA). ZnO nanoparticles capped with TEA showed maximum weight loss. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization of ZnO nanoparticles. Particle size was evaluated using effective mass approximation method from UV-vis spectroscopy and Scherrer's formula from XRD patterns. XRD analysis revealed single crystal ZnO nanoparticles of size 12-20 nm in case of TEA capping. TEA, oleic acid and thioglycerol capped synthesized ZnO nanoparticles were investigated at room temperature photoluminescence for three excitation wavelengths i.e. 304, 322 and 325 nm, showing strong peaks at about 471 nm when excited at 322 and 325 nm whereas strong peak was observed at 411 for 304 nm excitation.  相似文献   

19.
ZnO was deposited on bare Si(1 0 0), as-deposited, and annealed ZnO/Si(1 0 0) substrates by hydrothermal synthesis. The effects of a ZnO buffer layer and its thermal annealing on the properties of the ZnO deposited by hydrothermal synthesis were studied. The grain size and root mean square (RMS) roughness values of the ZnO buffer layer increased after thermal annealing of the buffer layer. The effect of buffer layer annealing temperature on the structural and optical properties was investigated by photoluminescence, X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Hydrothermal grown ZnO deposited on ZnO/Si(1 0 0) annealed at 750 °C with the concentration of 0.3 M exhibits the best structural and optical properties.  相似文献   

20.
The growth of Ag films on ZnO(0 0 0 −1) has been investigated by Auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). A high density of islands is nucleated at the earliest stages of the growth. An upstepping mechanism causes these islands to coalesce while the uncovered fraction of the ZnO surface remains constant (30%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号