首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A continuous cold atomic beam from a magneto-optical trap   总被引:3,自引:0,他引:3  
We have developed and characterized a new method to produce a continuous beam of cold atoms from a standard vapour-cell magneto-optical trap (MOT). The experimental apparatus is very simple. Using a single laser beam it is possible to hollow out in the source MOT a direction of unbalanced radiation pressure along which cold atoms can be accelerated out of the trap. The transverse cooling process that takes place during the extraction reduces the beam divergence. The atomic beam is used to load a magneto-optical trap operating in an ultra-high vacuum environment. At a vapour pressure of 10-8mbar in the loading cell, we have produced a continuous flux of 7×107atoms/s at the recapture cell with a mean velocity of 14 m/s. A comparison of this method with a pulsed transfer scheme is presented. Received 19 February 2001  相似文献   

2.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

3.
We demonstrate experimentally the continuous and pulsed loading of a slow and cold atomic beam into a magnetic guide. The slow beam is produced using a vapor loaded laser trap, which ensures two-dimensional magneto-optical trapping, as well as cooling by a moving molasses along the third direction. It provides a continuous flux larger than 109 atoms/s with an adjustable mean velocity ranging from 0.3 to 3 m/s, and with longitudinal and transverse temperatures smaller than 100 μK. Up to 3×108 atoms/s are injected into the magnetic guide and subsequently guided over a distance of 40 cm. Received 19 February 2002 Published online 28 June 2002  相似文献   

4.
Bright thermal atomic beams by laser cooling: A 1400-fold gain in beam flux   总被引:4,自引:0,他引:4  
Using a three-step transverse laser cooling scheme, a strongly diverging flow of metastable Ne(3s 3 P 2] atoms is compressed into a well-collimated, small diameter atomic beam (e.g., 1.4 mrad HWHM divergence at 3.6 mm beam diameter) with an unmodified axial velocity distribution centered at 580 m/s. The maximum increase in beam flux 1.04 m downstream of the source is a factor 1400; the maximum increase in phase space density, i.e., brightness, is a factor 160. The laser power used is only 140 mW. The scheme is extendable to a large variety of atomic species and enables the application of bright atomic beams in many areas of physics.  相似文献   

5.
程存峰  杨国民  蒋蔚  潘虎  孙羽  刘安雯  成国胜  胡水明 《物理学报》2011,60(10):103701-103701
高强度的亚稳态惰性原子束流在原子分子物理实验研究中具有广泛的应用.使用射频电离方法和激光横向冷却技术制备了高强度的亚稳态氪原子束流,并使用数值模拟方法对横向冷却激光场中的原子径迹进行了分析.通过激光诱导荧光光谱方法测量原子束的束流特性,结果显示,横向冷却后在束流源下游230 cm处的原子束流强度达1.6atoms/(s*sr),束流强度提高了两个量级.利用这种高强度原子束流,我们成功囚禁了1.3×1010个亚稳态84Kr原子,同时冷原子装载速率达到了3.0×1011atoms/s;并利用该装置成功地实现了高亮度的亚稳态氩原子束和原子阱. 关键词: 横向冷却 原子束 原子阱 惰性气体  相似文献   

6.
We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient β on the excited state ( 23 P 2) and metastable state ( 23 S 1) populations is also investigated. From these results we infer a rather uniform rate constant K sp = (1±0.4)×10-7 cm3/s. Received 8 September 2000 and Received in final form 19 December 2000  相似文献   

7.
Francium is one of the best candidates for atomic parity nonconservation (APNC) and for the search of permanent electric dipole moments (EDMs). APNC measurements test the weak force between electrons and nucleons at very low momentum transfers. They also represent a unique way to detect weak nucleon-nucleon interactions. EDMs are instead related to the time-reversal symmetry. Preliminary to these fundamental measurements are precision studies in atomic spectroscopy and the development of magneto-optical traps (MOT), which partially compensate for the lack of stable Fr isotopes. At LNL Legnaro, francium is produced by fusion of 100-MeV 18O with 197Au in a thick target, followed by evaporation of neutrons from the compound nucleus. Francium diffuses inside the hot target (1200 K) and is surface ionized for injection at 3 keV in an electrostatic beamline. Typically, we produce 1×106 (210Fr ions)/s for a primary flux of 1.5×1012 particles/s. We have studied Fr yields as a function of primary beam energy, intensity, and target temperature. Information on the efficiency of bulk diffusion, surface desorption and ionization is deduced. The beam then enters a Dryfilm-coated cell, where it is neutralized on a heated yttrium plate. The escape time of neutral Fr (diffusion + desorption) is approximately 20 s at 950 K, as measured with a dedicated setup. In the MOT, we use 6 orthogonal Ti:sapphire laser beams for the main pumping transition and 6 beams from a stabilized diode repumper. Fluorescence from trapped atoms is observed with a cooled CCD camera, in order to reach noise levels from stray light equivalent to approximately 50 atoms. Systematic tests are being done to improve the trapping efficiency. We plan to further develop Fr traps at LNL; in parallel, we will study APNC and EDM techniques and systematics with stable alkalis at Pisa, Siena, and Ferrara.  相似文献   

8.
In a magneto-optical trap (MOT) we are able to simultaneously trap and cool 7Li and Na. We investigated the loading behavior of the cloud of Li atoms in presence of the overlapped cloud of cold Na atoms, and, by blocking the weak repumping beam for Na, compared it with the loading curve for Li atoms only. Out of these loading curves we calculated the collision cross-section of Na on Li to be 10-11 cm 3 /s. Received 11 January 2002 / Received in final form 5 April 2002 Published online 24 September 2002  相似文献   

9.
闫树斌  耿涛  张天才  王军民 《中国物理》2006,15(8):1746-1751
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of ~ 1×10-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of ~ 8×10-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is ~2×107 atoms/s. About 5×106 caesium atoms are recaptured in the UHV MOT.  相似文献   

10.
王晓佳  冯焱颖  薛洪波  周兆英  张文栋 《中国物理 B》2011,20(12):126701-126701
We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4×109 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto-optical trap trapping laser intensity and the detuning.  相似文献   

11.
We report a study of transverse laser cooling on a metastable helium beam using spectrally broadened diode lasers (“white light") to increase its flux. For this purpose, beam profile and atomic flux versus laser power and other parameters have been characterized. We have performed experiments to compare this technique with other transverse cooling methods using monochromatic light. Best results are obtained with a “ziz-zag" configuration using “white light". Received 21 December 1998 and Received in final form 27 May 1999  相似文献   

12.
We present a new determination of the potential curves and interactions of the coupled electronic states A 1 Σ + u and b 3 Π u of the potassium dimer, based on new laser spectroscopy measurements within a molecular beam, combined with data available in the literature. We used a new global deperturbation approach, involving the Fourier Grid Hamiltonian method for energy level calculation. A standard deviation of 1.2 is obtained corresponding to a variance of 7.5×10 -3 cm-1, representing a significant improvement compared to the standard deviation of 4 yielded by the traditional local deperturbation approach. Received 12 June 2001 and Received in final form 3 September 2001  相似文献   

13.
A novel electron scattering apparatus for high resolution studies of angle-differential elastic and inelastic electron scattering from atoms and molecules in the gas phase is described and its performance characterized. It combines a laser photoelectron source, a triply differentially pumped collimated supersonic beam target (half angle 0.015 rad, background to beam density ratio < 0.01), and several electron multipliers for simultaneous detection of elastically scattered electrons and metastable atoms (or molecules) due to inelastic scattering. In detailed test measurements of the yield for the production of metastable He*(23S1) atoms around its threshold, the dependence of the overall energy width on various experimental parameters has been investigated. So far a resolution down to 7 meV (FWHM) has been obtained. Under such conditions we have investigated the profile of the He- (1 s 2 s 2 2 S 1/2 ) resonance at the scattering angles 22 ° , 45 ° , and 90 ° . From a consistent fit of the measured profiles by resonant scattering theory we determine a new value for the resonance energy ( E r = 19.365(1) eV) and an accurate resonance width ( Γ = 11.2(5) meV). These results are consistent with the previously recommended values. Received 23 July 2002 Published online 29 October 2002 RID="a" ID="a"e-mail: hotop@physik.uni-kl.de RID="b" ID="b"Permanent address: Department of Physics and Astronomy, Drake University, Des Moines, IA 50311, USA.  相似文献   

14.
In this work, the multiplet splitting in terms of a spin-dependent model is analyzed. The spin-polarized and unpolarized single configuration Dirac-Fock-Slater wavefunctions have been used in the evaluation of the total energies of highly ionized argon with different L shell population The transition energies of hollow argon atom with initial configurations 1s 0 1/22s m 1/22p n 1/22p l 3/2 with m = 0 to 2 and n + l varying from 6 to 1 are reported in this work. The calculations have been carried out by taking into account a relativistic exchange potential in the Dirac-Slater potential. To account for the correlation effects, a correction term has also been considered perturbatively. The present calculations show that the spin-polarized technique which is mainly applied to the ground states of atoms may also be applied to atoms ionized in the inner shells with a good degree of accuracy. Received 5 December 2000 and Received in final form 9 April 2001  相似文献   

15.
New measurements of photoionization cross-sections of the lithium isotopes are reported employing a Time of Flight (TOF) mass spectrometer in conjunction with an atomic beam apparatus. Using a two-step selective photoionization and saturation technique, we have simultaneously measured the photoionization cross-section of the 2p excited state of both the isotopes Li6 and Li7 as 15±2.5 Mb and 18 ±2.5 Mb where as the corresponding number densities have been determined as N0≈5.3×1010 atoms/cm3 and N0≈6.2×1011 atoms/cm3 respectively.  相似文献   

16.
We report on the first successful loading of a magneto-optical trap (MOT) with metastable He atoms from a Stark-slower. Thereby, deceleration of the atoms relies on laser-atom interaction in an inhomogeneous electric field. We show that the results obtained are comparable with early results from other groups achieved with a Zeeman slower. The Stark slower, which is able to fully control the final velocity of the atomic He beam, is the first step in achieving complete spin independent kinematic control based solely on electric fields. Received 2 October 2002 / Received in final form 20 January 2003 Published online 29 April 2003 RID="a" ID="a"e-mail: eichmann@mbi-berlin.de  相似文献   

17.
A two element magneto-optical trap (MOT) for Na and 7Li or 6Li is used to cool and trap each of them separately. A fraction of the cold atoms is maintained in the first 2P3/2 excited state by the cooling laser. These excited state atoms are ionized by laser light in the near-UV region, giving rise to a smaller number of trapped atoms and to different loading parameters. Photoionization cross-sections were derived out of these data. They are in reasonable agreement with data previously obtained using thermal samples and with theoretical predictions. Received 21 March 2001 and Received in final form 3 August 2001  相似文献   

18.
We study one-dimensional Sisyphus cooling on the transition of 87 Rb atoms in the electric field created by two counter-propagating linearly polarized laser beams with an angle of between the polarization directions. The neighbouring F '=0 and F '=2 excited states are found to play an important role in the cooling mechanism, e.g., by inhibiting a significant population of the velocity-selective dark state. Our experimental data, such as temperatures and probe absorption coefficients, agree well with the results of quantum Monte-Carlo wavefunction simulations. Received 26 November 1998 and Received in final form 20 April 1999  相似文献   

19.
We demonstrate the in situ detection of cold 87Rb atoms near a dielectric surface using the absorption of a weak, resonant evanescent wave. We have used this technique in time of flight experiments determining the density of atoms falling on the surface. A quantitative understanding of the measured curve was obtained using a detailed calculation of the evanescent intensity distribution. We have also used it to detect atoms trapped near the surface in a standing-wave optical dipole potential. This trap was loaded by inelastic bouncing on a strong, repulsive evanescent potential. We estimate that we trap 1.5×104 atoms at a density 100 times higher than the falling atoms. Received 14 May 2002 Published online 8 October 2002 RID="a" ID="a"e-mail: spreeuw@science.uva.nl  相似文献   

20.
Characteristics of the Stark broadened and overlapping 447.1 nm He I spectral line and its forbidden 447.0 nm components have been measured at electron densities between 4.4×1022 m-3 and 8.2×1022 m-3 and electron temperatures between 18 000 K and 33 000 K in plasmas created in five various discharge conditions using the low pressure pulsed arc as an optically thin plasma source operated in helium-nitrogen-oxygen gas mixture. Good agreement was found among our measured line characteristics and their existing calculated values, based on the quasistatic approximation. Possible influence of the singly ionized oxygen impurity atoms (O II) on the intensity values of the dip between allowed and forbidden components was found that can explain the disagreement among some existing experimental and calculated line characteristics data, at higher electron temperatures and densities. On the basis of the observed asymmetry of the 447.1 nm spectral line profile we have obtained the ion contribution parameter at 1022 m-3 electron density and 8 000 K electron temperature. Received 20 February 2001 and Received in final form 25 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号