首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Fresh skim milk is a stable colloidal system containing casein micelles and whey proteins. By decreasing the pH, the casein micelles become unstable and a gel is formed. During heat treatment at temperatures higher than 70 degrees C, the major whey proteins, e.g. alpha-lactalbumin and beta-lactoglobulin denature and start to interact with each other and with casein micelles. This changes the colloidal properties of the casein micelles. In this article, the pH-induced gel formation of heat-treated milk and the role of whey proteins was studied. Heat treatment in the range 70-90 degrees C induced a shift in gelation pH of skim milk to more alkaline pH values. This shift was directly related to whey protein denaturation. By using WPF milk it was shown that beta-lactoglobulin is principally responsible for the shift in gelation pH. alpha-lactalbumin caused neither alone nor in combination with beta-lg, an effect on the gelation pH. Heat treatment of milk for 10 min at 90 degrees C resulted in complete denaturation of the beta-lg present in skim milk but it is estimated that the casein micelles are coated only up to 40% by whey proteins when compared with pure whey protein aggregates.  相似文献   

2.
Bayram T  Pekmez M  Arda N  Yalçin AS 《Talanta》2008,75(3):705-709
Whey proteins were isolated from whey powder by a combination of gel exclusion chromatography and protease (pepsin or trypsin) treatment. Whey solution (6g/dl) was applied to Sephadex G-200 column chromatography and three fractions were obtained. Gel electrophoresis (SDS-PAGE) was used to identify the fractions; the first one contained immunoglobulins and bovine serum albumin, the second contained beta-lactoglobulin and alpha-lactalbumin whereas the third fraction contained small peptides. We have also subjected the whey filtrate to proteases (pepsin and trypsin). Treatment with proteases showed that beta-lactoglobulin can be obtained after hydrolysis of the second fraction with pepsin. When the whey filtrate was treated with pepsin and then applied to Sephadex G-200 column chromatography three fractions were obtained; the first one was bovine serum albumin, the second was beta-lactoglobulin and the third fraction contained small peptides. After trypsin treatment only two fractions were obtained; the first one was serum albumin and the second fraction was an alpha-lactalbumin rich fraction. We have determined the antioxidant activity of the fractions using an assay based on the measurement of superoxide radical scavenging activity. Our results showed that among the three fractions, the first fraction had the highest superoxide radical scavenging activity. Also, protease treatment of the second fraction resulted in an increase in the antioxidant activity.  相似文献   

3.
The development is described of a rapid, simply and accurate analytical method aimed at evaluating both the presence of cow milk in either raw ewe and water buffalo milk samples employed in industrial processes and the addition of powdered milk to samples of fresh raw milk, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The presence of adulteration is defined by evaluating the protein patterns coming from the most abundant whey proteins, alpha-lactalbumin and beta-lactoglobulin, used as molecular markers. As no pretreatment of the milk samples is required and owing to the speed and ease of use of MALDI-MS the proposed analytical protocol can be used as a routine strategy for the identification of possible adulteration of the raw fresh milk samples that the dairy industry receives from producers every day.  相似文献   

4.
1-Anilinonaphthalene-8-sulfonic acid (1,8-ANS), 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and 2-(p-toluidino)naphthalene-6-sulfonic acid (2,6-TNS) were evaluated as additives in different buffers for the detection of bovine whey proteins using laser-induced fluorescence (LIF) monitoring in capillary electrophoresis (CE). These N-arylaminonaphthalene sulfonates furnish a large fluorescence emission when associated to some proteins whereas their emission in aqueous buffers, such as those used in CE separations, is very small. To select the best detection conditions, the fluorescence of these probes was first compared using experiments carried out in a fluorescence spectrophotometer. Using bovine serum albumin (BSA) as a model protein, it was demonstrated that 2-(N-cyclohexylamino)ethanesulfonic acid (CHES) buffer (pH 8 and pH 10.2) and the fluorescent probe 2,6-TNS gave rise to the highest increase in fluorescence for BSA. When the composition of these separation buffers was optimized for the electrophoretic separations, CHES buffer, pH 10.2 was chosen as the most suitable buffer to detect bovine whey proteins. The limit of detection obtained for some whey proteins in CE separations was about 6.10(-8) M for BSA, 3.10(-7) M for beta-lactoglobulin A (beta-LGA), 3.10(-7) M for beta-lactoglobulin B (beta-LGB), and 3.10(-6) M for alpha-lactalbumin (alpha-LA). These detection limits were compared to those achieved using UV detection under the same separation conditions. The results showed that the detection limits of BSA, beta-LGA and beta-LGB were twice as good using LIF than with UV detection. However, the limit of detection for alpha-LA was better when UV was used. The applicability of LIF detection to CE separation of whey proteins in bovine milk samples was also demonstrated.  相似文献   

5.
In the field of food quality, bovine milk products are of particular interest due to the social and economic importance of the dairy products market. However, the risk of fraudulent manipulation is high in this area, for instance, replacing milk powder by whey is very interesting from an economic point of view. Therefore, there is a need to have suitable analytical methods available for the determination of all milk components, which is currently not the case, especially for the main proteins. The detection of potential manipulations requires then a clear analytical characterisation of each type of bovine milk, what constitutes the goal of this work. The separation of the major milk proteinic components has been carried out by ion-pair reversed-phase HPLC with photodiode array detection, using a C4 column. The overall optimisation has been achieved using a statistical experimental design procedure. The identification of each protein was ascertained using retention times, peak area ratios and second derivative UV spectra. Quantification was based on calibration curves drawn using purified proteins. Major sources of uncertainty were identified and the full uncertainty budget was established. The procedure was initially developed using the skimmed milk powder certified reference material CRM 063R and then applied to various types of commercial milks as well as to raw milk. The method is able to separate and quantify the seven major proteins (K-casein, alphas2-casein, alphas1-casein, beta-casein, alpha-lactalbumin, beta-lactoglobulin B and beta-lactoglobulin A) in one run and also to provide precise determinations of the total protein concentration. These are important results towards the further development of a reference method for major proteins in milk. In addition, the use of a certified material reference is suggested in order to make comparisons of method performances possible.  相似文献   

6.
Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches.  相似文献   

7.
A precise, sensitive and reliable RP-HPLC method was developed to enable not only unequivocal determination of alpha-lactalbumin and beta-lactoglobulin in bovine whey samples, but also simultaneous measurement of proteose peptone, caseinomacropeptide, bovine serum albumin and immunoglobulin G. The optimised method on the Resource RPC column allowed separation of the proteins in 30 min and could be applied to the analysis of soluble proteins in a variety of commercial and laboratory whey products. Furthermore, some qualitative information on protein heterogeneity and quality could be derived from the RP-HPLC analyses with additional data available from on-line electrospray mass spectrometry. Within- and between-day repeatability over a wide range of concentrations was excellent (RSD< or =5%) for all proteins except immunoglobulin G and bovine serum albumin where RSD was 7-10%. Analysis of grouped data from whey protein concentrate and whey protein isolate samples gave a limit of detection of < or =0.3% powder mass and a limit of quantitation of < or =1.0% powder mass for all proteins except immunoglobulin G. Limits of detection and quantitation were 0.6% and 2.0%, respectively, for this protein. Quantitative data obtained by the RP-HPLC method compared very favourably with data obtained by alternative methods of whey protein analysis.  相似文献   

8.
DNA oligonucleotides that form G-quartet structures were used as stationary phase reagents for separation of bovine milk proteins, including alpha-casein, beta-casein, kappa-casein, alpha-lactalbumin and beta-lactoglobulin. Both artificial protein mixtures and a skim milk sample were analyzed. The separations were performed using open-tubular capillary electrochromatography, in which the oligonucleotides were covalently attached to the inner surface of a fused-silica capillary. Better resolution was achieved using the G-quartet-coated capillaries than was achieved using either a bare capillary or a capillary coated with an oligonucleotide that does not form a G-quartet structure. A 4-plane G-quartet-forming stationary phase was able to resolve three peaks for alpha-casein and to detect thermal denaturation of the proteins in the milk sample. The results suggest that G-quartet stationary phases could be used to separate very similar protein structures, such as those arising from genetic variations or post-translational modifications.  相似文献   

9.
Quantitative analysis of competitive milk protein adsorption to air/water interfaces in aqueous foam was performed by capillary electrophoresis (CE). Foams were made by whipping protein solutions, in which skim milk powder (SMP) and whey protein isolate (WPI) were mixed at 0.5% protein in different proportions at different pH values and NaCl concentrations. Preferential adsorption of beta-casein into foam phases occurred under most solution conditions, if partial dissociation of the casein micelles had occurred. Preferential adsorption of beta-casein was not observed with added Ca2+, due to the re-association of casein micelles. Enrichment of caseins into the foam phase was more apparent than that of whey proteins. The foamability of SMP demonstrated a continuous improvement due to the gradually increasing dissociation of casein micelles when the concentration of NaCl increased from 0 to 0.8 M. The foamability of WPI increased when NaCl concentration rose from 0 to 0.1 M, and decreased with further increase in NaCl concentration. NaCl at low concentration (I < or = 0.4) did not show a significant effect on the competitive adsorption among milk proteins, indicating that electrostatic interactions do not play a key role in competitive adsorption. NaCl at higher concentration, e.g., 0.6 M, caused less whey protein to be adsorbed to the air/water interfaces. The whippability of WPI was highest at pH 4.5 and lowest at pH 3, and that of SMP was the opposite. The proportions of beta-lactoglobulin and alpha-lactalbumin in the foam phase were lower at acidic pH and higher at basic pH, compared with that at natural pH of WPI.  相似文献   

10.
A rapid and accurate method to identify bovine and ewe milk adulteration of fresh water buffalo mozzarella cheese by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described. The differentiation among mozzarella made from water buffalo milk and from mixtures of less expensive bovine and, more recently, ewe milk with water buffalo milk is achieved using whey proteins, alpha-lactalbumin and beta-lactoglobulins as molecular markers. It is worth noting that the method proposed here is, to our knowledge, the first strategy able to characterize possible fraudulent additions of ewe milk in samples of water buffalo milk devoted to the production of water buffalo mozzarella cheese. In addition, a linear relationship was found between the relative response of the molecular ion and the abundance of the analysed whey proteins. This demonstrates that this approach can be used to determine the amount of bovine or ovine milk added to water buffalo milk employed for mozzarella cheese production. Furthermore, this method also appears suitable for the analysis of ewe cheese. Hence these findings open the way to a new field for mass spectrometry in the evaluation of possible fraudulence in dairy industry production.  相似文献   

11.
High-performance liquid chromatography using a Chrompack P-300-RP column containing a polystyrene-divinylbenzene copolymer-based packing was examined to analyze bovine milk protein components. The separation of major raw-milk proteins could be performed rapidly and reliably with this HPLC/UV method. The determinations were performed in the linear ranges of 0.01-2.0 mg/ml for alpha-lactalbumin, 0.04-2.5 mg/ml for caseins and 0.02-2.0 mg/ml for beta-lactoglobulin. The validity of the method was verified. Since the chromatographic column enabled the quantification of only "native" milk proteins, the extent of denaturation and loss of milk proteins could be examined. Thus, evaluation of heat-induced proteins denaturation was carried out in raw milk heated for 5 min at pre-determined temperatures.  相似文献   

12.
Marvin LF  Parisod V  Fay LB  Guy PA 《Electrophoresis》2002,23(15):2505-2512
Infant formula powders were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) to assess the whey proteins quality, which may be altered by the heat treatment used during the processing conditions. Lactosylation was found to be the major chemical modification occurring in whey proteins. In parallel, a two-dimensional (2-D) gel electrophoresis was performed on the milk sample and the entire protein patterns were analyzed by nano-ESI-MS after cutting the different gel spots and in-gel trypsin digestion. A highly selective and specific tandem MS technique has been developed to characterize and localize up to ten lactosylation sites in beta-lactoglobulin (beta-Lg) and alpha(S2)-casein. alpha-Lactalbumin (alpha-La), with five lactosylated peptides, was found to be an interesting protein marker in the milk powder sample to detect chemical modification induced by the processing/storage conditions.  相似文献   

13.
Tellez CM  Cole KD 《Electrophoresis》2000,21(5):1001-1009
The performance of commercial and enzymatically modified size-exclusion (SE) gels in electrochromatography was compared for preparative protein separations. Dextran and agarose-based SE gels were subjected to enzymatic digestion under mild conditions. This treatment partially hydrolyzed the gel matrix modifying its pore size distribution. Enzymatic treatment of agarose-based SE gels was found to increase the resolution of the separation. Successful separation of preparative amounts of the A and B forms of beta-lactoglobulin (difference in electrophoretic mobility of 8.5%) was achieved with a high degree of purity using agarose-based SE gels. The four major whey proteins, beta-lactoglobulin, alpha-lactalbumin, BSA and immunoglobulins, were purified from an acid whey preparation. The degree of retention of a protein in electrochromatography followed their free-solution electrophoretic mobility (mu) when the protein was able to enter the gel pores and the ratio of diffusion/mu when the protein was excluded.  相似文献   

14.
Peptides and proteins were separated by capillary electrophoresis (CE) in fused-silica capillaries coated with an irreversibly adsorbed monolayer of derivatized polystyrene nanoparticles. Whereas phosphate buffer, pH 3.10, enabled the highly efficient separation of basic proteins with plate counts up to 1,400,000 m-1, volatile buffer components such as formic acid or acetic acid titrated with ammonia to the desired pH had to be used for the direct coupling of CE with electrospray ionization mass spectrometry (ESI-MS). Compared to 40 mM phosphoric acid-sodium hydroxide, pH 3.10, a background electrolyte containing 125 mM formic acid-ammonia, pH 4.00, was shown to yield equivalent separation efficiency. Investigation of the influence of buffered electrolytes on the ESI-MS signal of lysozyme at pH 2.70-4.00 showed that the charge state distribution shifted to lower charge states at higher pH with a concomitant five-fold decrease in signal intensity of the most abundant signal. The presence of trifluoroacetic acid in the background electrolyte greatly increased the level of baseline noise and completely inhibited the observation of any mass signals related to proteins. Full scan spectra could be acquired from 50-500 fmol amounts of proteins during coupled CE-ESI-MS utilizing 100-125 mM formic acid-ammonia, pH 3.10. However, compared to UV detection, considerable band broadening is observed with ESI-MS detection which is mainly attributed to column overloading, band spreading in the interface, and scanning data acquisition. Finally, the major whey proteins beta-lactoglobulin A, beta-lactoglobulin B, and alpha-lactalbumin were identified in a whey drink by comparison of molecular masses determined by CE-ESI-MS to molecular masses calculated from the amino acid sequence.  相似文献   

15.
A method was developed for the quantification of cow milk adulteration in goat milk, based on solvent separation of whey proteins followed by high-performance liquid chromatography with electrospray ionization mass spectrometry (HPLC/ESI-MS). The presence of cow milk was determined using beta-lactoglobulin whey protein as the molecular marker. The adulterants were identified using both retention time and molecular mass derived from multiply charged molecular ions. Standard solutions containing cow and goat milk in different volume ratios were prepared and analyzed. Good linearity covering cow milk content from 5% and above was obtained. The proposed method identifies the adulterants using accurate molecular masses for protein identification and detects the addition of cow milk to goat milk at levels as low as 5%.  相似文献   

16.
Microalgae have become an important commercial source of carotenoids and microalgae-derived functional foods are consumed by people worldwide. Therefore, an HPLC method was developed to discern the variety and content of carotenoids in the microalga Chlorella pyrenoidosa. The microalga sample was powdered, extracted, saponified and subjected to HPLC analysis. A mobile phase of methanol-acetonitrile-water (84:14:2, v/v/v) (A) and methylene chloride (100%) (B) with the following gradient elution was developed: 100% A and 0% B in the beginning, maintained for 14 min, decreased to 95% A in 25 min, 75% A in 30 min, 74% A in 35 min, 45% A in 50 min and returned to 100% A in 55 min. A total of 32 carotenoids were resolved within 49 min by using a C30 column with flow rate at 1 mL/min and detection at 450 nm. An internal standard beta-apo-8'-carotenal was used to quantify all the carotenoids. All-trans-lutein was present in exceptionally large amount (125034.4 microg/g), followed by cis isomers of lutein (27975.3 microg/g), all-trans-alpha-carotene (2465.8 microg/g), zeaxanthin (2170.3 microg/g), cis isomers of beta-carotene (2159.3 microg/g), all-trans-beta-carotene (2155.0 microg/g), cis isomers of alpha-carotene (1766.7 microg/g), beta-cryptoxanthin (334.9 microg/g), neoxanthin and its cis isomers (199.7 microg/g), neochrome (65.2 microg/g), auroxanthin (38.5 microg/g) and violaxanthin and its cis isomers (38.1 microg/g).  相似文献   

17.
On-line coupling between CIEF and ESI/MS based on the use of bare fused-silica capillaries and glycerol-water media, recently developed in our laboratory, has been investigated for the separation of milk whey proteins that present close pI values. First, a new rinsing procedure, compatible with MS detection, has been developed to desorb these rather hydrophobic proteins (α-casein (α-CN), bovine serum albumin (BSA), lactoferrin (LF)) from the inner capillary wall and to avoid capillary blockages. Common hydrochloric acid washing solution was replaced by a multi-step sequence based on the use of TFA, ammonia and ethanol. To achieve the separation of major whey proteins (β-lactoglobulin A (β-LG A), β-lactoglobulin B (β-LG B), α-lactalbumin (α-LA) and BSA, which possess close pI values (4.5-5.35), CIEF parameters i.e. carrier ampholyte nature, capillary partial filling length with ampholyte/protein mixture and focusing time, have been optimized with respect to total analysis time, sensitivity and precision on pI determination. After optimization of sheath liquid composition (80:20 (v/v) methanol-water+1% HCOOH), quantitation of β-LG A, β-LG B, α-LA and BSA was performed. The limits of detection obtained from extracted ion current (EIC) and single ion monitoring (SIM) modes were in the 57-136 nM and 11-68 nM range, respectively. Finally, first results obtained from biological samples demonstrated the suitability of CIEF-MS as a potential alternative methodology to 2D-PAGE to diagnose milk protein allergies.  相似文献   

18.
The availability of accurate and sensitive detection methods for food allergens is crucial for the food industry to ensure the correct labelling of their products in order to protect allergic consumers. For this purpose a method using solid-phase extraction and liquid chromatography coupled to mass spectrometry was developed to detect traces of three allergenic cow milk proteins (lactalbumin, lactoglobulins A and B) in mixed-fruit juice samples. Different sample pre-treatments were compared and the best recoveries were obtained with a method employing a solid-phase extraction cartridge. Recoveries ranging from 68% to 79% were achieved for 5 and 20microg/ml tested and the limit of detection was set at 1microg/ml. Both full scan and multiple ion monitoring acquisition modes were investigated and compared. The method was utilized to analyse 15 mixed-fruit juices collected from the market and was found to be capable of positively identifying all three milk proteins. The developed method enables the unambiguous determination of allergenic whey proteins in mixed-fruit juices and can assist in the protection of milk allergic individuals.  相似文献   

19.
The electrochemical quartz crystal nanobalance (EQCN) was used to measure the adsorption behavior of a series of lipids (stearate, oleate, linoleate, and gamma-linolenate) on a Pt surface from a phosphate buffer pH 7.0 solution at 295 K and to investigate their adsorption/displacement behavior with the proteins, beta-lactoglobulin and alpha-lactalbumin, which are known to cause fouling during milk processing. The EQCN technique and the complementary technique of cyclic voltammetry measured simultaneously provided information on the efficiency of solubilization of the proteins by these lipids. Excellent agreement was obtained for the surface concentration of adsorbed lipid from the surface charge density from cyclic voltammetry measurements and the change in mass from the EQCN frequency measurements. The Gibbs energy of adsorption showed the lipids to have a strong affinity for the platinum surface. Addition of protein to a preadsorbed lipid layer showed alpha-lactalbumin to be able to coadsorb with the lipids, while beta-lactoglobulin was able to desorb some of the unsaturated lipids but appeared to coadsorb with the saturated lipid, stearate. Addition of lipid to a preadsorbed protein layer showed the unsaturated lipids to be able to displace some of the protein. A comparison of the desorption ability of the lipids showed stearate to be very inefficient at removing protein, while the other three lipids were able to remove each of the proteins, with the order of efficiency for protein desorption being oleate > linoleate > gamma-linolenate.  相似文献   

20.
A simple liquid chromatographic method was developed for the determination of sennosides B and A in leaves of Cassia angustifolia. These compounds were extracted from leaves with a mixture of methanol-water (70 + 30, v/v) after defatting with hexane. Analyte separation and quantitation were achieved by gradient reversed-phase liquid chromatography and UV absorbance at 270 nm using a photodiode array detector. The method involves the use of an RP-18 Lichrocart reversed-phase column (5 microm, 125 x 4.0 mm id) and a binary gradient mobile-phase profile. The various other aspects of analysis, namely, peak purity, similarity, recovery, repeatability, and robustness, were validated. Average recoveries of 98.5 and 98.6%, with a coefficient of variation of 0.8 and 0.3%, were obtained by spiking sample solution with 3 different concentration solutions of standards (60, 100, and 200 microg/mL). Detection limits were 10 microg/mL for sennoside B and 35 microg/mL for sennoside A, present in the sample solution. The quantitation limits were 28 and 100 microg/mL. The analytical method was applied to a large number of senna leaf samples. The new method provides a reliable tool for rapid screening of C. angustifolia samples in large numbers, which is needed in breeding/genetic engineering and genetic mapping experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号