首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
We demonstrate a convenient and cost-effective chemical approach for fabricating highly ordered Au nanoparticle arrays with sub-10-nm interparticle gaps. Near-field enhancements inside the interparticle gaps create uniform periodic arrays of well-defined "hot spots" exploitable for large surface-enhanced Raman spectroscopy (SERS) enhancements. A cetyltrimethylammonium bromide (CTAB) bilayer surrounding each individual nanoparticle upon array crystallization is responsible for this periodic gap structure; displacement of the CTAB by smaller thiolated molecules does not affect the structural integrity of the arrays. As SERS substrates, the as-fabricated Au nanoparticle arrays exhibit high SERS sensitivity, long-term stability, and consistent reproducibility.  相似文献   

2.
Highly ordered gold nanoparticle multilayer films were achieved conveniently using didodecyldimethylammonium bromide (DDAB) films as a template. The template was produced by casting DDAB chloroform solution onto the surface of a (3-aminopropyl)trimethoxysilane-modified indium tin oxide substrate and then evaporating the organic solvent. Gold nanoparticle multilayer films were prepared by soaking the template in 2.6 nm colloidal gold solution for 120 min. The well-ordered superlattice structure of the DDAB template and the gold nanoparticle multilayer films was identified by x-ray diffraction. The characterizations of the gold nanoparticle multilayer films by UV-vis spectroscopy, atomic force microscopy, and cyclic voltammerty were described in detail. The application of the as-prepared gold nanoparticle multilayer films in surface-enhanced Raman spectroscopy (SERS) was investigated by using Rhodamine 6G as a probe molecule. It was found that the colloidal gold nanoparticle multilayer films exhibit remarkable enhancement ability and can be used as SERS substrates.  相似文献   

3.
A useful method for the synthesis of various gold nanostructures is presented. The results demonstrated that flowerlike nanoparticle arrays, nanowire networks, nanosheets, and nanoflowers were obtained on the solid substrate under different experimental conditions. In addition, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) on the as-prepared gold nanostructures of various shapes were measured, and their shape-dependent properties were evaluated. The intensity of the SERS signal was the smallest for the gold nanosheets, and the flowerlike nanoparticle arrays gave the strongest SERS signals.  相似文献   

4.
The surface enhanced Raman scattering (SERS) of a number of species and strains of bacteria obtained on novel gold nanoparticle (approximately 80 nm) covered SiO(2) substrates excited at 785 nm is reported. Raman cross-section enhancements of >10(4) per bacterium are found for both Gram-positive and Gram-negative bacteria on these SERS active substrates. The SERS spectra of bacteria are spectrally less congested and exhibit greater species differentiation than their corresponding non-SERS (bulk) Raman spectra at this excitation wavelength. Fluorescence observed in the bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. Despite the field enhancement effects arising from the nanostructured metal surface, this fluorescence component appears "quenched" due to an energy transfer process which does not diminish the Raman emission. The surface enhancement effect allows the observation of Raman spectra of single bacterial cells excited at low incident powers and short data acquisition times. SERS spectra of B. anthracis Sterne illustrate this single cell level capability. Comparison with previous SERS studies reveals how the SERS vibrational signatures are strongly dependent on the morphology and nature of the SERS active substrates. The potential of SERS for detection and identification of bacterial pathogens with species and strain specificity on these gold particle covered glassy substrates is demonstrated by these results.  相似文献   

5.
We discuss the application of gold nanorods for forming SERS substrates for chemical and biological sensing. Two approaches are considered: (1) formation of planar arrays on silicon wafers by using suspensions of gold nanorods; and (2) a new approach based on gold nanorod powders that can be easily dissolved in aqueous media. Both SERS platforms are characterized and their SERS enhancement factors are compared.  相似文献   

6.
The silver-modified gold nanoplate arrays as bimetallic surface-enhanced Raman scattering (SERS) substrates were optimized for the surface-enhanced Raman detection of streptavidin/biotin monolayer assemblies. The bimetallic gold–silver nanoplate arrays were fabricated by coating silver nanoparticles uniformly on the gold nanoplate arrays. Depending on silver nanoparticle coating, the localized surface plasmon resonance (LSPR) peak of the bimetallic gold–silver nanoplate arrays blue-shifted and broadened significantly. The common probe molecule, Niel Blue A sulfate (NBA) was used for testing the SERS activity of the bimetallic gold–silver nanoplate arrays. The SERS intensity increased with the silver nanoparticle coating, due to a large number of hot spots and nanoparticle interfaces. The platforms were tested against a monolayer of streptavidin functionalized over the bimetallic gold–silver nanoplate arrays showing that good quality spectra could be acquired with a short acquisition time. The supramolecular interaction between streptavidin (strep) and biotin showed subsequent modification of Raman spectra that implied a change of the secondary structure of the host biomolecule. And the detection concentration for biotin by this method was as low as 1.0 nM. The enhanced SERS performance of such bimetallic gold–silver nanoplate arrays could spur further interest in the integration of highly sensitive biosensors for rapid, nondestructive, and quantitative bioanalysis, particularly in microfluidics.  相似文献   

7.
Reproducible detection of a target molecule is demonstrated using temporally stable solution-phase silica-void-gold nanoparticles and surface-enhanced Raman scattering (SERS). These composite nanostructures are homogeneous (diameter = 45 +/- 4 nm) and entrap single 13 nm gold nanoparticle cores inside porous silica membranes which prevent electromagnetic coupling and aggregation between adjacent nanoparticles. The optical properties of the gold nanoparticle cores and structural changes of the composite nanostructures are characterized using extinction spectroscopy and transmission electron microscopy, respectively, and both techniques are used to monitor the formation of the silica membrane. The resulting nanostructures exhibit temporally stable optical properties in the presence of salt and 2-naphthalenethiol. Similar SERS spectral features are observed when 2-naphthalenethiol is incubated with both bare and membrane-encapsulated gold nanoparticles. Disappearance of the S-H Raman vibrational band centered at 2566 cm(-1) with the composite nanoparticles indicates that the target molecule is binding directly to the metal surface. Furthermore, these nanostructures exhibit reproducible SERS signals for at least a 2 h period. This first demonstration of utilizing solution-phase silica-void-gold nanoparticles as reproducible SERS substrates will allow for future fundamental studies in understanding the mechanisms of SERS using solution-phase nanostructures as well as for applications that involve the direct and reproducible detection of biological and environmental molecules.  相似文献   

8.
Hybrid micro/nanostructures composed with alternative Au nanoparticle (NP) arrays and protein dots were fabricated via layer-by-layer self-assembly and the microsphere lithography technique. These micro/nanostructures were novel protein chips which had applications in the surface-enhanced Raman spectroscopy (SERS) based immunoassay. The synthetic processes were to fabricate Au nanowell arrays initially by using the templates of ordered monolayers of polystyrene (PS) microsphere arrays. Then, the proteins of antibody (avidin) were imbedded in the Au nanowells. Lastly, the immune reaction was implemented by adding atto 610-biotin. SERS spectra were recorded as the immunoassay readout, which showed the lowest detective concentration of 100 pg/mL. These new kind of SERS-based protein chips were easy to fabricate, inexpensive and supersensitive, and exhibit the potential application in bioassays, forensics and biosensors.  相似文献   

9.
Raman dye-labeled nanoparticle probes for proteins   总被引:2,自引:0,他引:2  
In this paper, we demonstrate how one can chemically design Raman dye-functionalized nanoparticle probes with specific protein-binding affinities and use these probes, coupled with surface-enhanced Raman scattering (SERS) spectroscopy, to perform multiplexed screening of protein-small molecule interactions and protein-protein interactions in a protein microarray format.  相似文献   

10.
Microfluidic chips combined with surface-enhanced Raman spectroscopy (SERS) offer an outstanding platform for rapid and high-sensitivity chemical analysis. However, it is nontrivial to conveniently form nanoparticle aggregrates (as SERS-active spots for SERS detection) in microchannels in a well-controlled manner. Here, we present a rapid, highly sensitive and label-free analytical technique for determining bovine serum albumin (BSA) on a poly(dimethylsiloxane) (PDMS) microfluidic chip using SERS. A modified PDMS pneumatic valve and nanopost arrays at the bottom of the fluidic microchannel are used for reversibly trapping gold nanoparticles to form gold aggregates, creating SERS-active spots for Raman detection. We fabricated a chip that consisted of a T-shaped fluidic channel and two modified pneumatic valves, which was suitable for fast loading of samples. Quantitative analysis of BSA is demonstrated with the measured peak intensity at 1,615 cm−1 in the surface-enhanced Raman spectra. With our microfluidic chip, the detection limit of Raman can reach as low as the picomolar level, comparable to that of normal mass spectrometry.  相似文献   

11.
The observation of single-particle surface-enhanced Raman scattering(SERS) has generated considerable interest both in the nanomaterials filed and in the single-particle spectroscopy community.It is a challenge to realize rapid,facile,and high throughput SERS at single nanoparticle level.Here,without the complex experimental device and difficult experimental operations,a general single-particle SERS technique has been achieved by using dark-field-assisted surface-enhanced Raman spectroscopy(DFSERS).This advanced method provides in-situ characterization of the chemical reaction performance at single gold nanorod.  相似文献   

12.
Surface‐enhanced Raman spectroscopy (SERS) has evolved from an esoteric physical phenomenon to a robust and effective analytical method recently. The need of addressing both the field enhancement and the extinction of nanoparticle suspensions, however, has been underappreciated despite its substantive impact on the sensing performance. A systematic experimental investigation of SERS enhancement and attenuation is performed in suspensions of gold nanostars, which exhibit a markedly different behavior in relation to conventional nanoparticles. The relationship is elucidated between the SERS enhancement and the localized surface plasmon resonance band, and the effect of the concentration of the gold nanostars on the signal propagation is investigated. It is shown that an optimal concentration of gold nanostars exists to maximize the enhancement factor (EF), and the maximum EF occurs when the LSPR band is blue‐shifted from the excitation wavelength rather than at the on‐resonance position.  相似文献   

13.
This paper reviews recent developments in the design and application of two types of optical nanosensor, those based on: (1) localized surface plasmon resonance (LSPR) spectroscopy and (2) surface-enhanced Raman scattering (SERS). The performance of these sensors is discussed in the context of biological and chemical sensing. The first section addresses the LSPR sensors. Arrays of nanotriangles were evaluated and characterized using realistic protein/ligand interactions. Isolated, single nanoparticles were used for chemosensing and performed comparably to the nanoparticle array sensors. In particular, we highlight the effect of nanoparticle morphology on sensing response. The second section details the use of SERS sensors using metal film over nanosphere (MFON) surfaces. The high SERS enhancements and long-term stability of MFONs were exploited in order to develop SERS-based sensors for two important target molecules: a Bacillus anthracis biomarker and glucose in a serum protein mixture.  相似文献   

14.
通过分子自组装方法制备4,4′-二硫联吡啶(PySSPy)单分子膜修饰的金电极. 利用所形成的对巯基吡啶自组装单分子膜(SAMs)作为偶联层进行金纳米粒子有序膜的组装. 对该纳米粒子组装体系进行Raman光谱测定, 得到了具有良好信噪比的对巯基吡啶单分子膜的表面增强拉曼散射(SERS)光谱. 在此基础上, 进一步采用电化学现场SERS光谱技术研究了该纳米粒子组装体系的SERS光谱随电位变化的规律. 在该体系稳定的电位范围内表征对巯基吡啶单分子膜的特征谱峰1011与1093 cm-1、1575与1610 cm-1以及1206与1215 cm-1这三对谱峰其强度随着所施加电位的改变呈现出明显的规律性. 分析表明, 偶联单分子层中吡啶环芳香性随着所施加电位的改变而有规律地变化是SERS光谱特征改变的内在原因.  相似文献   

15.
Wavelength-scanned surface-enhanced Raman excitation spectroscopy   总被引:1,自引:0,他引:1  
A detailed wavelength-scanned surface-enhanced Raman excitation spectroscopy (WS SERES) study of benzenethiol adsorbed on Ag nanoparticle arrays, fabricated by nanosphere lithography (NSL), is presented. These NSL-derived Ag nanoparticle array surfaces are both structurally well-characterized and extremely uniform in size. The WS SERES spectra are correlated, both spatially and spectrally, with the corresponding localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays. The surface-enhanced Raman scattering (SERS) spectra were measured in two excitation wavelength ranges: (1) 425-505 nm, and (2) 610-800 nm, as well as with the 532-nm line from a solid-state diode-pumped laser. The WS SERES spectra have line shapes similar to those of the LSPR spectra. The maximum SERS enhancement factor is shown to occur for excitation wavelengths that are blue-shifted with respect to the LSPR lambda(max) of adsorbate-covered nanoparticle arrays. Three vibrational modes of benzenethiol (1575, 1081, and 1009 cm(-1)) are studied simultaneously on one substrate, and it is demonstrated that the smaller Raman shifted peak shows a maximum enhancement closer to the LSPR lambda(max) than that of a larger Raman shifted peak. This is in agreement with the predictions of the electromagnetic (EM) enhancement mechanism of SERS. Enhancement factors of up to approximately 10(8) are achieved, which is also in good agreement with our previous SERES studies.  相似文献   

16.
A convenient reproducible technique is reported for the fabrication of large‐area gold semishell arrays by mechanically pressing porous anodic alumina (PAA) stamps into gold/polymer bilayer structures that serve as robust and cost‐efficient surface‐enhanced Raman‐scattering (SERS) substrates. The surface structure can be tuned further to optimize the enhancement factor according to optional PAA fabrication parameters and imprinting pressures. Finite‐difference time‐domain calculations indicate that the structure may possess excellent SERS characteristics due to the high density and abundance of hot spots.  相似文献   

17.
本文发展了一种基于离心技术的清洗金纳米八面体表面十六烷基三甲基溴化铵(CTAB)吸附物的有效方法.选择合适的离心转速和离心次数,可以驱除金纳米八面体表面的CTAB分子.通过热失重分析、表面增强拉曼光谱和傅里叶红外光谱表征可以推测,金纳米八面体经合适的离心清洗后,表面残留的少量CTAB分子通过疏水作用由烷基长链与金表面形成(亚)单层吸附,同时,与金表面有强相互作用的溴离子发生脱附.溶剂水对CTAB的稀释在离心清洗金纳米八面体表面的过程中发挥着重要作用.金纳米粒子在离心场中的高速运动导致粒子周围双电层发生极化,极化双电层内产生的局部液流引起双电层内物质交换从而也影响了金纳米八面体表面的清洗效果.金纳米八面体在硫酸溶液和碱性硝酸铅溶液中的电化学研究表明,经过离心清洗的金纳米八面体可以直接应用于单晶电化学研究.  相似文献   

18.
We synthesised a novel gold-on-porous silicon hybrid material that exhibits a highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS) response. The material was fabricated simply by reducing gold chloride with hydrofluoric acid on the surface of macro-porous silicon (macro-PSi). The material consists of thorn-shaped gold nanocrystals with characteristic shapes and sizes on the surface of macro-PSi.  相似文献   

19.
Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.  相似文献   

20.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号