首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Aggregation‐induced emission (AIE) is commonly observed for propeller‐like luminogens with aromatic rotors and stators. Herein, we report that a coumarin derivative containing a seven‐membered aliphatic ring (CD‐7) but no rotors showed typical AIE characteristics, whereas its analogue with a five‐membered aliphatic ring (CD‐5) exhibited an opposite aggregation‐caused quenching (ACQ) effect. Experimental and theoretical results revealed that a large aliphatic ring in CD‐7 weakens structural rigidity and promotes out‐of‐plane twisting of the molecular backbone to drastically accelerate nonradiative excited‐state decay, thus resulting in poor emission in solution. The restriction of twisting motion in aggregates blocks the nonradiative decay channels and enables CD‐7 to fluoresce strongly. The results also show that AIE is a general phenomenon and not peculiar to propeller‐like molecules. The AIE and ACQ effects can be switched readily by the modulation of molecular rigidity.  相似文献   

2.
We investigate the nonradiative decay process of diphenyldibenzofulvene (DPDBF) in solid phase by using the quantum chemistry methods. To carry out the nonradiative rate constant calculation, we construct a solid phase model based on the ONIOM method. The geometry of the DPDBF molecule is optimized for the ground state by DFT and the first excited state by TD-DFT, and the corresponding vibrational frequencies and normal coordinates are computed. Under displaced-distorted harmonic oscillator potential approximation, Huang-Rhys factors are obtained. Vibronic coupling constants are calculated as a function of the normal mode based on Domcke's scheme. We find that vibronic coupling constants of 12 modes with large reorganization energies are of similar order, and if this result is still valid for other modes, the internal conversion rate would be determined by high frequency modes because they have a significant nuclear factor that is related to Franck-Condon overlap intergrals. We also find that geometrical changes are suppressed due to the stacking effect, which yields small Huang-Rhys values in the solid phase.  相似文献   

3.
本文系统介绍了本课题组发展的分子辐射跃迁和无辐射跃迁速率常数的热振动关联函数理论方法的最新进展及其在聚集诱导发光领域的典型应用. 基于第一性原理计算, 定量考察了位阻、温度、聚集等因素对分子体系发光性质的影响. 从微观角度给出了分子聚集诱导发光机理: 分子激发态的无辐射能量衰减通道主要是对应于低频模式的芳香环扭转和高频模式的碳碳伸缩振动. 当位阻增加、温度降低或者分子聚集时, 芳香环的转动受限, 无辐射能量衰减通道被抑制, 导致无辐射跃迁速率常数降低, 而其对辐射跃迁速率常数影响不大, 从而提高分子的荧光量子产率, 荧光增强.  相似文献   

4.
An intensive investigation of structure–property relationships in the aggregation‐induced enhanced emission (AIEE) of luminescent compounds is essential for the rational design of highly emissive solid‐state materials. In the AIEE‐active compounds N,N′‐bis[3‐hydroxy‐4‐(2′‐benzothiazolyl)phenyl]isophthalamide and N,N′‐bis[3‐hydroxy‐4‐(2′‐benzothiazolyl)phenyl]‐5‐tert‐butylisophthalamide, fast photoinduced twisted intramolecular charge transfer (TICT) of the enol excited state is found to be mainly responsible for the weak emission of their dilute solutions. The photoinduced TICT enol excited state is formed with a greatly distorted configuration, due to the large rotation about the C? N single bond. This facilitates nonradiative TICT decay from the normal enol excited state to the highly twisted enol excited state, rather than proton‐transfer decay to the keto excited state. In aggregates, photoinduced nonradiative deactivation of TICT is strongly prohibited, so that excited‐state intramolecular proton transfer (ESIPT) becomes the dominant decay, and hence contributes greatly to the subsequent emission enhancement of the keto form. Molecular design and investigation of analogous single‐armed compounds further verifies this kind of AIEE mechanism.  相似文献   

5.
There have been intensive studies on the newly discovered phenomena called aggregation induced emission (AIE), in contrast to the conventional aggregation quenching. Through combined quantum mechanics and molecular mechanics computations, we have investigated the aggregation effects on the excited state decays, both via radiative and nonradiative routes, for pyrazine derivatives 2,3‐dicyano‐5,6‐diphenylpyrazine ( DCDPP ) and 2,3‐dicyanopyrazino phenanthrene ( DCPP ) in condensed phase. We show that for DCDPP there appear AIE for all the temperature, because the phenyl ring torsional motions in gas phase can efficiently dissipate the electronic excited state energy, and get hindered in aggregate; while for its “locked”‐phenyl counterpart, DCPP , theoretical calculation can only give the normal aggregation quenching. These first‐principles based findings are consistent with recent experiment. The primary origin of the exotic AIE phenomena is due to the nonradiative decay effects. This is the first time that AIE is understood based on theoretical chemistry calculations for aggregates, which helps to resolve the present disputes over the mechanism. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
A high contrast tri‐state fluorescent switch (FSPTPE) with both emission color change and on/off switching is achieved in a single molecular system by fusing the aggregation‐induced emissive tetraphenylethene (TPE) with a molecular switch of spiropyran (SP). In contrast to most of the reported solid‐state fluorescent switches, FSPTPE only exists in the amorphous phase in the ring‐closed form owing to its highly asymmetric molecular geometry and weak intermolecular interactions, which leads to its grinding‐inert stable cyan emission in the solid state. Such an amorphous phase facilitates the fast response of FSPTPE to acidic gases and induces the structural transition from the ring‐closed form to ring‐open form, accompanied with the “Off” state of the fluorescence. The structural transition leads to a planar molecular conformation and high dipole moment, which further results in strong intermolecular interactions and good crystallinity, so when the acid is added together with a solvent, both the ring‐opening reaction and re‐crystallization can be triggered to result in an orange emissive state. The reversible control between any two of the three states (cyan/orange/dark) can be achieved with acid/base or mechanical force/solvent treatment. Because of the stable initial state and high color contrast (Δλ=120 nm for cyan/orange switch, dark state ΦF<0.01 %), the fluorescent switch is very promising for applications such as displays, chemical or mechanical sensing, and anti‐counterfeiting.  相似文献   

7.
Fluorescence lifetimes of isolated membranes of Rhodopseudomonas viridis were measured in the temperature range of 77 K to 25 K. At room temperature, the main component of the fluorescence decay of bacteriochlorophyll (BChl) b had a time constant of 50 ps. In contrast to other purple bacteria, the emission at low temperature was spectrally homogeneous and showed essentially single lifetimes of 140 ps at 77 K and 180 ps at 25 K, with the primary electron donor in the oxidized state. Taking into account the relative fluorescence yields with open and closed reaction centers, we arrive at numbers of 125 ps and 215 ps, respectively, for open reaction centers. These numbers are significantly smaller than expected on the basis of measurements of the efficiency of charge separation, perhaps suggesting that the excitation decay in the absence of reaction centers is considerably faster at low temperature than at room temperature. At least four different spectral components with different lifetimes were observed at 25 K in the emission of Heliobacterium chlorum, a short-wavelength component of about 30 ps and three longer-wavelength components of about 100 ps, 300 ps, and 900 ps. This indicates a strong heterogeneity in the emitting pigment, BChl g-808. The component with the shortest lifetime does not appear to be affected by the redox state of the reaction center and might reflect energy transfer to BChl g species which are connected to the reaction center.  相似文献   

8.
1‐Cyano‐1,2‐bis(biphenyl)ethene (CNBE) derivatives with a hexa(ethylene glycol) group as an amphiphilic side chain were synthesized and the self‐assembling character and fluorescence behavior were investigated. The amphiphilic derivatives showed aggregate‐induced enhanced emission (AIEE) in water and in the solid state. The fluorescence quantum yield increased as the rigidity of the aggregates increased (i.e., in ethyl acetate<in water<in the solid state). As determined from measurements of fluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes, a key factor for the enhanced emission is suppression of the nonradiative decay process arising from restricted molecular motion. Additionally, the difference in the emission rate constant is not negligible and can be used to interpret the difference in fluorescence quantum yield in water and in the solid state.  相似文献   

9.
The aggregation-induced emission (AIE) properties of 1,1,2,3,4,5-hexaphenylsilole (HPS) and poly{11-[(1,2,3,4,5-pentaphenylsilolyl)oxy]-1-phenyl-1-undecyne} (PS9PA) were studied by time-resolved fluorescence technique. The enhanced fluorescence and long fluorescent lifetime were obtained for the sample in an aggregate state as compared to the sample in solution. The time-decay of fluorescence of HPS and PS9PA in high viscosity solvents and low-temperature glasses has also been measured in detail to further investigate the possible mechanism for AIE. Enhanced light emission and long fluorescence lifetime were detected for both HPS and PS9PA in the solution-thickening and -cooling experiments. These results provided direct evidence that the enhanced photoluminescence (PL) efficiency is due to restricted intramolecular motion, which ascribes AIE to the deactivation of nonradiative decay caused by restricted torsional motions of the molecules in the solid state or aggregate form.  相似文献   

10.
Boron-dipyrrin chromophores containing a 5-aryl group with or without internal steric hindrance toward aryl rotation have been synthesized and then characterized via X-ray diffraction, static and time-resolved optical spectroscopy, and theory. Compounds with a 5-phenyl or 5-(4-tert-butylphenyl) group show low fluorescence yields (approximately 0.06) and short excited-singlet-state lifetimes (approximately 500 ps), and decay primarily (>90%) by nonradiative internal conversion to the ground state. In contrast, sterically hindered analogues having an o-tolyl or mesityl group at the 5-position exhibit high fluorescence yields (approximately 0.9) and long excited-state lifetimes (approximately 6 ns). The X-ray structures indicate that the phenyl or 4-tert-butylphenyl ring lies at an angle of approximately 60 degrees with respect to the dipyrrin framework whereas the angle is approximately 80 degrees for mesityl or o-tolyl groups. The calculated potential energy surface for the phenyl-substituted complex indicates that the excited state has a second, lower energy minimum in which the nonhindered aryl ring rotates closer to the mean plane of the dipyrrin, which itself undergoes some distortion. This relaxed, distorted excited-state conformation has low radiative probability as well as a reduced energy gap from the ground state supporting a favorable vibrational overlap factor for nonradiative deactivation. Such a distorted conformation is energetically inaccessible in a complex bearing the sterically hindered o-tolyl or mesityl group at the 5-position, leading to a high radiative probability involving conformations at or near the initial Franck-Condon form of the excited state. These combined results demonstrate the critical role of aryl-ring rotation in governing the excited-state dynamics of this class of widely used dyes.  相似文献   

11.
Chemical groups are known to tune the luminescent efficiencies of graphene-related nanomaterials, but some species, including the epoxide group (−COC−), are suspected to act as emission-quenching sites. Herein, by performing nonadiabatic excited-state dynamics simulations, we reveal a fast (within 300 fs) nonradiative excited-state decay of a graphene epoxide nanostructure from the lowest excited singlet (S1) state to the ground (S0) state via a conical intersection (CI), at which the energy difference between the S1 and S0 states is approximately zero. This CI is induced after breaking one C−O bond at the −COC− moiety during excited-state structural relaxation. This study ascertains the role of epoxide groups in inducing the nonradiative recombination of the excited electron-hole, providing important insights into the CI-promoted nonradiative de-excitations and the luminescence tuning of relevant materials. In addition, it shows the feasibility of utilizing nonadiabatic excited-state dynamics simulations to investigate the photophysical processes of the excited states of graphene nanomaterials.  相似文献   

12.
5,6-Trimethylenecytosine (TMC) and 5,6-trimethyleneuracil (TMU), in which the twist of the C5-C6 bond (or the pyrimidalization of C5) is strongly hindered, do not exhibit the subpicosecond excited-state lifetime characteristic of the naturally occurring pyrimidine bases. This result demonstrates the important role the out-of-plane deformation of the six-membered ring plays in the ultrafast (subpicosecond) internal conversion of photoexcited nucleobases. The dramatically shorter fluorescence lifetime of TMU ( approximately 30 ps) relative to TMC ( approximately 1.2 ns), in aqueous solution at room temperature, is attributed to the presence in TMU of an efficient, secondary nonradiative decay channel of S(1)(pipi*) involving a low-lying (1)npi* state.  相似文献   

13.
A series of twelve platinum(II) complexes of the form (N^N^N)PtX have been synthesized and characterized where N^N^N is 1,3-bis(2-pyridylimino)isoindolate ligands (BPI) or BPI ligands whose aryl moieties are substituted with tert-butyl, nitro, alkoxy, iodo or chloro groups, and X is a chloride, fluoride, cyano, acetate, phenyl or 4-(dimethylamino)phenyl ligand. All complexes display at least one irreversible oxidation and two reversible reduction waves at potentials dependent on the position and the electron donating or withdrawing nature of both X and the substituted N^N^N ligand. Broad room temperature phosphorescence ranging in energy from 594 to 680 nm was observed from the complexes, with quantum efficiencies ranging from 0.01 to 0.05. The efficiency of emission is dictated largely by nonradiative processes since the rate constants for nonradiative deactivation [(1.1-100) × 10(5) s(-1)] show greater variation than those for radiative decay [(0.57-4.0) × 0(4) s(-1)]. Nonradiative deactivation for compounds with X = Cl follow the energy gap law, i.e. the nonradiative rate constants increase exponentially with decreasing emission energy. Deactivation of the excited state appears to be strongly influenced by a non-planar distortion of the BPI ligand.  相似文献   

14.
The DNA base adenine and four monomethylated adenines were studied in solution at room temperature by femtosecond pump-probe spectroscopy. Transient absorption at visible probe wavelengths was used to directly observe relaxation of the lowest excited singlet state (S(1) state) populated by a UV pump pulse. In H(2)O, transient absorption signals from adenine decay biexponentially with lifetimes of 0.18 +/- 0.03 ps and 8.8 +/- 1.2 ps. In contrast, signals from monomethylated adenines decay monoexponentially. The S(1) lifetimes of 1-, 3-, and 9-methyladenine are similar to one another and are all below 300 fs, while 7-methyladenine has a significantly longer lifetime (tau = 4.23 +/- 0.13 ps). On this basis, the biexponential signal of adenine is assigned to an equilibrium mixture of the 7H- and 9H-amino tautomers. Excited-state absorption (ESA) by 9-methyladenine is 50% stronger than by 7-methyladenine. Assuming that ESA by the corresponding tautomers of adenine is unchanged, we estimate the population of 7H-adenine in H(2)O at room temperature to be 22 +/- 4% (estimated standard deviation). To understand how the environment affects nonradiative decay, we performed the first solvent-dependent study of nucleobase dynamics on the ultrafast time scale. In acetonitrile, both lowest energy tautomers of adenine are present in roughly similar proportions as in water. The lifetimes of the 9-substituted adenines depend somewhat more sensitively on the solvent than those of the 7-substituted adenines. Transient signals for adenine in H(2)O and D(2)O are identical. These solvent effects strongly suggest that excited-state tautomerization is not an important nonradiative decay pathway. Instead, the data are most consistent with electronic energy relaxation due to state crossings between the optically prepared (1)pipi* state and one or more (1)npi* states and the electronic ground state. The pattern of lifetimes measured for the monomethylated adenines suggests a special role for the (1)npi* state associated with the N7 electron lone pair.  相似文献   

15.
Polyfluorene end-capped with N-(2-benzothiazole)-1,8-naphthalimide (PF-BNI) is a highly fluorescent material with fluorescence emission modulated by solvent polarity. Its low energy excited state is assigned as a mixed configuration state between the singlet S(1) of the fluorene backbone (F) with the charge transfer (CT) of the end group BNI. The triexponential fluorescence decays of PF-BNI were associated with fast energy migration to form an intrachain charge-transfer (ICCT) state, polyfluorene backbone decay, and ICCT deactivation. Time-resolved fluorescence anisotropy exhibited biexponential relaxation with a fast component of 12-16 ps in addition to a slow one in the range 0.8-1.4 ns depending on the solvent, showing that depolarization occurs from two different processes: energy migration to form the ICCT state and slow rotational diffusion motion of end segments at a longer time. Results from femtosecond transient absorption measurements agreed with anisotropy decay and showed a decay component of about 16 ps at 605 nm in PF-BNI ascribed to the conversion of S(1) to the ICCT excited state. From the ratio of asymptotic and initial amplitudes of the transient absorption measurement, the efficiency of intrachain ICCT formation is estimated in 0.5, which means that, on average, half of the excited state formed in a BNI-(F)(n)-BNI chain with n = 32 is converted to its low energy intrachain charge-transfer (ICCT) state.  相似文献   

16.
The energy gap law established for aromatic hydrocarbons and rare earth ions relates the nonradiative decay rate to the energy gap of a transition through a multiphonon emission process. We show that this energy gap law can be applied to the phosphoresce of a series of conjugated polymers and monomers for which the radiative decay rate has been enhanced through incorporation of a heavy metal. We find that the nonradiative decay rate from the triplet state T(1) increases exponentially with decreasing T(1)-S(0) gap for the polymers and monomers at 300 and 20 K. Comparison of the nonradiative decay of polymers with that of their corresponding monomers highlights the role of electron-lattice coupling.  相似文献   

17.
A novel, highly stable photochromic dyad 3 based on a perylene bisimide (PBI) fluorophore and a diarylethene (DAE) photochrome was synthesized and the optical and photophysical properties of this dyad were studied in detail by steady‐state and time‐resolved ultrafast spectroscopy. This photochromic dyad can be switched reversibly by UV‐light irradiation of its ring‐open form 3 o leading to the ring‐closed form 3 c , and back reaction of 3 c to 3 o by irradiation with visible light. Solvent‐dependent fluorescence studies revealed that the emission of ring‐closed form 3 c is drastically quenched in solvents of medium (e.g., chloroform) to high (e.g., acetone) polarities, while the emission of the ring‐open form 3 o is appreciably quenched only in highly polar solvents like DMF. The strong fluorescence quenching of 3 c is attributed to a photoinduced electron‐transfer (PET) process from the excited PBI unit to ring‐closed DAE moiety, as this process is thermodynamically highly favorable with a Gibbs free energy value of ?0.34 eV in dichloromethane. The electron‐transfer mechanism for the fluorescence quenching of ring‐closed 3 c is substantiated by ultrafast transient measurements in dichloromethane and acetone, revealing stabilization of charge‐separated states of 3 c in these solvents. Our results reported here show that the new photochromic dyad 3 has potential for nondestructive read‐out in write/read/erase fluorescent memory systems.  相似文献   

18.
A computational model of nonradiative decay is developed and applied to explain the time-dependent emission spectrum of thioflavin T (ThT). The computational model is based on a previous model developed by Glasbeek and co-workers (van der Meer, M. J.; Zhang, H.; Glasbeek, M. J. Chem. Phys. 2000, 112, 2878) for auramine O, a molecule that, like ThT, exhibits a high nonradiative rate. The nonradiative rates of both auramine O and ThT are inversely proportional to the solvent viscosity. The Glasbeek model assumes that the excited state consists of an adiabatic potential surface constructed by adiabatic coupling of emissive and dark states. For ThT, the twist angle between the benzothiazole and the aniline is responsible for the extensive mixing of the two excited states. At a twist angle of 90°, the S(1) state assumes a charge-transfer-state character with very small oscillator strength, which causes the emission intensity to be very small as well. In the ground state, the twist angle of ThT is rather small. The photoexcitation leads first to a strongly emissive state (small twist angle). As time progresses, the twist angle increases and the oscillator strength decreases. The fit of the experimental results by the model calculations is good for times longer than 3 ps. When a two-coordinate model is invoked or a solvation spectral-shift component is added, the fit to the experimental results is good at all times.  相似文献   

19.
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices.  相似文献   

20.
The fast nonradiative decay dynamics of the lowest two excited pipi(*) electronic states (S(2) and S(3)) of hexafluorobenzene have been investigated by using femtosecond time-resolved time-of-flight mass spectrometry. The molecules were excited at wavelengths between 265 nm > or = lambda(pump) > or = 217 nm and probed by four- and three-photon ionization at lambda(probe)=775 nm. The observed temporal profiles exhibit two exponential decay times (tau(1)=0.54-0.1 ps and tau(2)=493-4.67 ps, depending on the excitation wavelength) and a superimposed coherent oscillation with vibrational frequency nu(osc)=97 cm(-1) and damping time tau(D) that is two to three times longer than the respective tau(1). The first decay component (tau(1)) is assigned to rapid radiationless transfer from the excited optically bright pipi(*) electronic state (S(2) or S(3), respectively) through a conical intersection (CI) to the lower-lying optically dark pisigma(*) state (S(1)) of the molecule; the second component (tau(2)) is attributed to the subsequent slower relaxation from the S(1) state back to the electronic ground state (S(0)). tau(2) dramatically decreases with increasing vibronic excitation energy up to the CI connecting the pisigma(*) with the S(0) state. The coherent oscillation is identified as nuclear motion along the out-of-plane vibration nu(16a) (notation as for benzene), which has e(2u) symmetry and acts as coupling mode between the pipi(*) and pisigma(*) states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号