首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In its most simple form, the energy gap law for excited-state nonradiative decay predicts a linear dependence of ln k(nr) on the ground- to excited-state energy gap, where k(nr) is the rate constant for nonradiative decay. At this level of approximation, the energy gap law has been successfully applied to nonradiative decay in a wide array of MLCT excited states of polypyridyl complexes of Re(I), Ru(II), and Os(II). This relationship also predicts a dependence of k(nr) on the structural characteristics of the acceptor ligand. We report here a brief survey of the literature which suggests that such effects exist and have their origin in the extent of delocalization of the excited electron in the ligand pi framework and on acceptor ligand rigidity.  相似文献   

2.
应用无辐射跃迁理论, 结合密度泛函理论, 研究了共轭多烯体系光物理性质随共轭长度变化的规律. 结果表明, 辐射跃迁速率与共轭长度几乎无关, 但无辐射跃迁速率随链长而增加. 这是因为当共轭链增长时, 振子强度增加, 跃迁能减小, 从而对辐射跃迁速率相抵消, 而在无辐射跃迁过程中, 能隙规则起到主导作用.  相似文献   

3.
A series of twelve platinum(II) complexes of the form (N^N^N)PtX have been synthesized and characterized where N^N^N is 1,3-bis(2-pyridylimino)isoindolate ligands (BPI) or BPI ligands whose aryl moieties are substituted with tert-butyl, nitro, alkoxy, iodo or chloro groups, and X is a chloride, fluoride, cyano, acetate, phenyl or 4-(dimethylamino)phenyl ligand. All complexes display at least one irreversible oxidation and two reversible reduction waves at potentials dependent on the position and the electron donating or withdrawing nature of both X and the substituted N^N^N ligand. Broad room temperature phosphorescence ranging in energy from 594 to 680 nm was observed from the complexes, with quantum efficiencies ranging from 0.01 to 0.05. The efficiency of emission is dictated largely by nonradiative processes since the rate constants for nonradiative deactivation [(1.1-100) × 10(5) s(-1)] show greater variation than those for radiative decay [(0.57-4.0) × 0(4) s(-1)]. Nonradiative deactivation for compounds with X = Cl follow the energy gap law, i.e. the nonradiative rate constants increase exponentially with decreasing emission energy. Deactivation of the excited state appears to be strongly influenced by a non-planar distortion of the BPI ligand.  相似文献   

4.
The series of polyynes with the structure trans, trans-[Ar-Pt(P 2)-(C[triple bond]C) n -Pt(P 2)-Ar], where P = tri( p-tolyl)phosphine, Ar = p-tolyl, and n = 3, 4, 5, 6 (6, 8, 10, 12 sp carbon atoms), has been subjected to a comprehensive photophysical investigation. At low temperature ( T < 140 K) in a 2-methyltetrahydrofuran (MTHF) glass, the complexes exhibit moderately efficient phosphorescence appearing as a series of narrow (fwhm < 200 cm (-1)) vibronic bands separated by ca. 2100 cm (-1). The emission is assigned to a (3)pi,pi* triplet state that is concentrated on the sp carbon chain, and the vibronic progression arises from coupling of the excitation to the -C[triple bond]C- stretch. The 0-0 energy of the phosphorescence decreases with increasing sp carbon chain length, spanning a range of over 6000 cm (-1) across the series. Transient absorption spectroscopy carried out at ambient temperature confirms that the (3)pi,pi* triplet is produced efficiently, and it displays a strongly allowed triplet-triplet absorption. In the MTHF solvent glass ( T < 140 K), the emission lifetimes increase with emission energy. Analysis of the triplet nonradiative decay rates reveals a quantitative energy gap law correlation. The nonradiative decay rates can be calculated by using parameters recovered from a single-mode Franck-Condon fit of the emission spectra.  相似文献   

5.
Developing the quantum transition rate theory of Prezhdo and Rossky (J. Chem. Phys. 1997, 107, 5863), we produced a new non-Condon theory of the rate of electron transfer (ET) which happens through a protein medium with conformational fluctuation. The new theory is expressed by a convolution form of the power spectrum for the autocorrelation function of the electronic tunneling matrix element T(DA)(t) with quantum correction and the ordinary Franck-Condon factor. The new theory satisfies the detailed balance condition for the forward and backward ET rates. The ET rate formula is divided into two terms of elastic and inelastic tunneling mechanisms on the mathematical basis. The present theory is applied to the ET from Bph(-) to Q(A) in the reaction center of Rhodobacter sphaeroides. Numerical calculations of T(DA)(t) were made by a combined method of molecular dynamics simulations and quantum chemistry calculations. We showed that the normalized autocorrelation function of T(DA)(t) is almost expressed by exponential forms. The calculated energy gap law of the ET rate is nearly Marcus' parabola in most of the normal region and around the maximum region, but it does not decay substantially in the inverted region, which is called the anomalous inverted region. We also showed that the energy gap law at the high uphill energy gap in the normal region is elevated considerably from the Marcus' parabola, which is called the anomalous normal region. Those anomalous energy gap laws are due to the inelastic tunneling mechanism which works actively at the energy gap far from zero. We presented an empirical formula for easily calculating the non-Condon ET rate, which is usable by many researchers. We provided experimental evidence for the anomalous inverted region which was basically reproduced by the present theory. The present theory was extensively compared with the previous non-Condon theories.  相似文献   

6.
The electronic, vibrational, and excited-state properties of hexanuclear rhenium(III) chalcogenide clusters based on the [Re(6)(mu(3)-Q)(8)](2+) (Q = S, Se) core have been investigated by spectroscopic and theoretical methods. Ultraviolet or visible excitation of [Re(6)Q(8)](2+) clusters produces luminescence with ranges in maxima of 12 500-15 100 cm(-)(1), emission quantum yields of 1-24%, and emission lifetimes of 2.6-22.4 microseconds. Nonradiative decay rate constants and the luminescence maxima follow the trend predicted by the energy gap law (EGL). Examination of 24 clusters in solution and 14 in the solid phase establish that exocluster ligands engender the observed EGL behavior; clusters with oxygen- or nitrogen-based apical ligands achieve maximal quantum yields and the longest lifetimes. The excited-state decay mechanism was investigated by applying nonradiative decay models to temperature-dependent emission experiments. Solid-state Raman spectra were recorded to identify vibrational contributions to excited-state deactivation; spectral assignments were enabled by normal coordinate analysis afforded from Hartree-Fock and DFT calculations. Excited-state decay is interpreted with a model where normal modes largely centered on the [Re(6)Q(8)](2+) core induce nonradiative relaxation. Hartree-Fock and DFT calculations of the electronic structure of the hexarhenium family of compounds support such a model. These experimental and theoretical studies of [Re(6)Q(8)](2+) luminescence provide a framework for elaborating a variety of luminescence-based applications of the largest series of isoelectronic clusters yet discovered.  相似文献   

7.
The optical absorption, fluorescence excitation, and emission spectra of the Cm(III) aqua ion in 0.001 M perchloric acid were studied in pure H(2)O, pure D(2)O, and in mixtures of H(2)O-D(2)O at temperatures from 10 to 85 °C. The quantum yield of the fluorescence of the Cm(III) aqua ion in pure H(2)O and D(2)O was also measured in this temperature range and the radiative decay rate constant was obtained from these data. The results indicate that, from 10 to 85 °C, the effect of temperature on the absorption, excitation, and emission spectra is very small. By correcting the observed decay rate constant for the radiative rate constant, a set of correlations between the observed fluorescence decay rate constant and the hydration number of Cm(3+) in H(2)O at temperatures from 10 to 85 °C was developed. A weak temperature dependence was observed for the nonradiative decay rate constant for the (6)D'(7/2)-(8)S'(7/2) transition and described by the Arrhenius equation. The activation energy of the nonradiative decay was measured to be 0.9 kJ mol(-1), approximately matching the energy gap between the first and the second (A(1) and A(2)) levels of the metastable (6)D'(7/2) multiplet of the Cm(III) aqua ion. On the basis of these observations, it is postulated that the slight increase in the observed fluorescence decay rate constant as the temperature increases from 10 to 85 °C is due to the effect of thermal population of the A(2) level.  相似文献   

8.
The nature and properties of the low-lying singlet and triplet valence excited states of 2,2':5',2'-terthiophene (terthiophene) and 2,2':5',2':5',2'-quaterthiophene (tetrathiophene) are discussed on the basis of high-level ab initio computations. The spectroscopic features determined experimentally for short alpha-oligothiophenes are rationalised on theoretical grounds. Special attention is devoted to the nonradiative decay process through intersystem crossing (ISC) from the singlet to the triplet manifold, which is known to be relatively less efficient in tetrathiophene. Along the geometry relaxation of the S1 state of terthiophene, the S1 and T2 states become degenerate, which leads to a favourable situation for the occurrence of ISC. The parallel process is expected to be less favoured in tetrathiophene because of the less efficient spin-orbit coupling and the increase of the S1-T2 energy gap.  相似文献   

9.
The ultrafast radiationless decay of photoexcited uracil and cytosine has been investigated by ab initio quantum chemical methods based on CIS and CR-EOM-CCSD(T) electronic energy calculations at optimized CIS geometries. The calculated potential energy profiles indicate that the S(1) --> S(0) internal conversion of the pyrimidine bases occurs through a barrierless state switch from the initially excited (1)pipi state to the out-of-plane deformed excited state of biradical character, which intersects the ground state at a lower energy. This three-state nonradiative decay mechanism predicts that replacement of the C5 hydrogen by fluorine introduces an energy barrier for the initial state switch, whereas replacement of the C6 hydrogen by fluorine does not. These predictions are borne out by the very different fluorescence yields of 5-fluorinated bases relative to the corresponding 6-fluorinated bases. It is concluded from these results that the origin of the ultrafast radiationless decay is the same for the two pyrimidine bases.  相似文献   

10.
The intramolecular radiative and nonradiative relaxation processes of three thiophene-S,S-dioxide derivatives with different molecular rigidity are investigated in different solutions and in inert matrix. We show that the fluorescence quantum efficiency and the relaxation dynamics are strongly dependent on the environment viscosity, whereas they are almost independent of the environment polarity. We demonstrate that this strong dependence is due to an environment dependent nonradiative decay rate, whereas no relevant variations of the radiative decay rate are observed. We demonstrate that the dipole coupling with the solvent does not provide an efficient nonradiative decay channel and that the S(n) - S(1) vibrational relaxation is very efficient in all of the molecules and for all of the investigated environments. Moreover first-principles time-dependent density-functional theory calculations in the correct, i.e., excited-state, molecular conformation, suggest that significant contributions of intersystem crossing to the triplet manifold can be excluded. We then conclude that the main nonradiative process determining the fluorescence quantum efficiency of this class of molecules is S(1) - S(0) internal conversion (IC). An explanation for the IC rate dependence in terms of the environment viscosity, molecular rigidity, S(1) - S(0) energy-gap, and molecular volume is presented.  相似文献   

11.
A theoretical investigation on the luminescence efficiency of a series of d8 transition‐metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M‐salen]n complexes (salen=N,N′‐bis(salicylidene)ethylenediamine; M=Pt, Pd (n=0); Au (n=+1)) in acetonitrile solutions at room temperature: [Pt‐salen] is phosphorescent and [Au‐salen]+ is fluorescent, but [Pd‐salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron‐withdrawing groups at the 4‐position of the Schiff base ligand should widen the 3MLCT–3MC gap (MLCT=metal‐to‐ligand charge transfer and MC=metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding PdII Schiff base complex. Although it is experimentally proven that [Pd‐salph‐4E] (salph=N,N′‐bis(salicylidene)‐1,2‐phenylenediamine; 4E means an electron‐withdrawing substituent at the 4‐position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding PtII Schiff base complex, [Pt‐salph‐4E], is also much less emissive than the unsubstituted analogue, [Pt‐salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M‐salph‐X] (X is a substituent on the salph ligand, M=Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low‐frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin–orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well.  相似文献   

12.
The diphenyldibenzofulvene (DPDBF) molecule appears in two forms: ring open and ring closed. The former fluoresces weakly in solution, but it becomes strongly emissive in the solid phase, exhibiting an exotic aggregation-induced emission phenomenon. The latter presents a normal aggregation quenching phenomenon, as is expected. We implement nonadiabatic molecular dynamics based on the combination of time-dependent Kohn-Sham (TDKS) and density functional tight binding (DFTB) methods with Tully's fewest switches surface hopping algorithm to investigate the excited state nonradiative decay processes. From the analysis of the nonadiabatic coupling vectors, it is found that the low frequency twisting motion in the ring open DPDBF couples strongly with the electronic excitation and dissipates the energy efficiently. While in the closed form, such motion is blocked by a chemical bond. This leads to the nonradiative decay rate for the open form (1.4 ps) becoming much faster than the closed form (24.5 ps). It is expected that, in the solid state, the low frequency motion of the open form will be hindered and the energy dissipation pathway by nonradiative decay will be slowed, presenting a remarkable aggregation enhanced emission phenomenon.  相似文献   

13.
We investigate the excited-state decay processes for the 3-(2-cyano-2- phenylethenyl-Z)-NH-indole (CPEI) in the solid phase through combined quantum mechanics and molecular mechanics (QM/MM) and vibration correlation formalisms for radiative and nonradiative decay rates, coupled with time-dependent density functional theory (TDDFT). By comparing the isolated CPEI molecule and the molecule-in-cluster, we show that the molecular packing through intermolecular hydrogen-bonding interactions can hinder the excited-state nonradiative decay and thus enhance the fluorescence efficiency in the solid phase. Aggregation effect is shown to block the nonradiative decay process through hindering the low-frequency vibration motions. The fluorescence quantum yields for both isolated molecule and aggregation are predicted to be insensitive to temperature due to the hydrogen-bonding nature, and their values at room temperature are consistent with the experiment.  相似文献   

14.
Photothermal calorimetry and fluorescence spectroscopy were used to determine the relaxations of the photoexcited singlet state of two PPV and polyfluorene oligomers, (E,E)-1,4-bis[(2-benzyloxy)styryl]benzene (PVDOP) and ter(9,9'-spirobifluorene) (TSBF). The decay rates of different S1 relaxation channels, which include intersystem crossing (ISC), radiative, and nonradiative decay can be determined by the combination of photoacoustic calorimetry (PAC) and the time-correlated single photon counting (TCSPC) technique. The triplet state energy level is determined by the phosphorescence (Ph) spectra recorded at 77 K. The ISC yields are approximately 3% and 6% for PVDOP and TSBF, respectively. The T1 to S0 transition decay rate is acquired by PAC and photothermal beam deflection (PBD) measurements. The triplet state decay rate is 17 and 21 ms(-1) at room temperature. The Ph intensity decay at 77 K shows that the triplet state lifetime increases by 4 orders of magnitude, as compared to room temperature.  相似文献   

15.
We design well‐defined metal‐semiconductor nanostructures using thiol‐functionalized CdTe quantum dots (QDs)/quantum rods (QRs) with bovine serum albumin (BSA) protein‐conjugated Au nanoparticles (NPs)/nanorods (NRs) in aqueous solution. The main focus of this article is to address the impacts of size and shape on the photophysical properties, including radiative and nonradiative decay processes and energy transfers, of Au‐CdTe hybrid nanostructures. The red shifting of the plasmonic band and the strong photoluminescence (PL) quenching reveal a strong interaction between plasmons and excitons in these Au‐CdTe hybrid nanostructures. The PL quenching of CdTe QDs varies from 40 to 86 % by changing the size and shape of the Au NPs. The radiative as well as the nonradiative decay rates of the CdTe QDs/QRs are found to be affected in the presence of both Au NPs and NRs. A significant change in the nonradiative decay rate from 4.72×106 to 3.92×1010 s?1 is obtained for Au NR‐conjugated CdTe QDs. It is seen that the sizes and shapes of the Au NPs have a pronounced effect on the distance‐dependent energy transfer. Such metal‐semiconductor hybrid nanostructures should have great potentials for nonlinear optical properties, photovoltaic devices, and chemical sensors.  相似文献   

16.
We theoretically study the trapping time distribution and the efficiency of the excitation energy transport in dendritic systems. Trapping of excitations, created at the periphery of the dendrimer, on a trap located at its core, is used as a probe of the efficiency of the energy transport across the dendrimer. The transport process is treated as incoherent hopping of excitations between nearest-neighbor dendrimer units and is described using a rate equation. We account for radiative and nonradiative decay of the excitations while diffusing across the dendrimer. We derive exact expressions for the Laplace transform of the trapping time distribution and the efficiency of trapping, and analyze those for various realizations of the energy bias, number of dendrimer generations, and relative rates for decay and hopping. We show that the essential parameter that governs the trapping efficiency is the product of the on-site excitation decay rate and the trapping time (mean first passage time) in the absence of decay.  相似文献   

17.
This paper describes the synthesis of thiophene-substituted sulfinyl monomers. It comprises a four-step reaction by which the thiophene unit is built in via Suzuki coupling. These monomers could be used as building blocks for the preparation of conducting polymers via a new concept: the sulfinyl precursor route i.e. via thiophene substituted poly(p-phenylenevinylene) precursors. Furthermore, the complete 1H and 13C NMR signal assignment is presented. In addition to being essential for the characterization of the polymers concerned, it offers useful input information for further improvement of chemical shift prediction software. Furthermore, the T1C relaxation decay times are demonstrated to have the potential of being a fast and robust criterion for the spectral assignment of analogous monomers.  相似文献   

18.
Phthalocyanine (Pc) dimers connected through trans-platinum(II) diacetylide linkers have been prepared by reaction of the corresponding ethynylphthalocyanines with trans-bis(triethylphosphine)platinum(II) chloride. Special emphasis was placed on the analysis of the ground- and excited-state features of these compounds in relation to butadiyne-bridged Pc dimers and the corresponding monomers. Both Zn(II)-containing Pc dimers exhibit long-lived triplet excited states. The insertion of σ-bonded trans-platinum(II) diacetylide spacers decoupled the two Pc groups and led to an appreciable acceleration (by a factor of up to 10) of the radiative and nonradiative decay rate of the singlet and triplet excited states.  相似文献   

19.
The salts [Ru(bpy)3](PF6)2, cis-[Ru(bpy)2(py)2](PF6)2, trans-[Ru(bpy)2(4-Etpy)2](PF6)2, [Ru(tpy)2](PF6)2, and [Re(bpy)(CO)3(4-Etpy)](PF6) (bpy=2,2'-bipyridine, py=pyridine, 4-Etpy=4-ethylpyridine, and tpy=2,2':6',2-terpyridine) have been incorporated into poly(methyl methacrylate) (PMMA) films and their photophysical properties examined by both steady-state and time-resolved absorption and emission measurements. Excited-state lifetimes for the metal salts incorporated in PMMA are longer and emission energies enhanced due to a rigid medium effect when compared to fluid CH3CN solution. In PMMA part of the fluid medium reorganization energy, lambdaoo, contributes to the energy gap with lambdaoo approximately 700 cm-1 for [Ru(bpy)3](PF6)2 from emission measurements. Enhanced lifetimes can be explained by the energy gap law and the influence of the excited-to-ground state energy gap, Eo, on nonradiative decay. From the results of emission spectral fitting on [Ru(bpy)3](PF6)2* in PMMA, Eo is temperature dependent above 200 K with partial differentialEo/ partial differentialT=2.8 cm-1/deg. cis-[Ru(bpy)2(py)2](PF6)2 and trans-[Ru(bpy)2(4-Etpy)2](PF6)2 are nonemissive in CH3CN and undergo photochemical ligand loss. Both emit in PMMA and are stable toward ligand loss even for extended photolysis periods. The lifetime of cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is temperature dependent, consistent with a contribution to excited-state decay from thermal population and decay through a low-lying dd state or states. At temperatures above 190 K, coinciding with the onset of the temperature dependence of Eo for [Ru(bpy)3](PF6)2*, lifetimes become significantly nonexponential. The nonexponential behavior is attributed to dynamic coupling between MLCT and dd states, with the lifetime of the latter greatly enhanced in PMMA with tau approximately 3 ns. On the basis of these data and data in 4:1 (v/v) EtOH/MeOH, the energy gap between the MLCT and dd states is decreased by approximately 700 cm-1 in PMMA with the dd state at higher energy by DeltaH0 approximately 1000 cm-1. The "rigid medium stabilization effect" for cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is attributed to inhibition of metal-ligand bond breaking and a photochemical cage effect.  相似文献   

20.
In this paper we explore the contribution of quadratic impurity—phonon coupling terms on nonradiative multiphonon transition rates in solids. It is demonstrated that the quadratic terms may increase substantially the transition rate and may modify quantitatively the energy gap law. Such effects will be exhibited even when the quadratic coupling is too weak to be observable in the optical spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号