首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,3-Bis(2-formylphenoxy)-2-propanol (BFPP) is grafted to 3-(triethoxysilyl)-propyl isocyanate (TESPIC) to prepare the organic precursor BFPP-Si. Then, the organic precursor BFPP-Si is coordinated with rare earth ion to obtain the luminescent center RE-BFPP-Si. Allylamine monomer (AM) is modified by TESPIC to form the precursor AM-Si which is then polymerized with the benzoyl peroxide as the initiator to form the polymer precursor PAM-Si. The other polymer precursor polyethylene glycol (PEG)-Si is achieved through the grafting reaction between PEG and TESPIC. Subsequently, the hybrid materials RE-BFPP-Si-PAM or RE-BFPP-Si-PEG are assembled in which RE-BFPP-Si and PAM-Si or PEG-Si connected with Si-O bonds through sol-gel process and characterized with scanning electronic microscopy, X-ray diffraction, and TG-DSC curves. Their photophysical properties are especially studied in details, indicating that the introduction of organic polymer chain is favorable for the luminescence lifetime and quantum efficiency.  相似文献   

2.
Two kinds of Schiff-base-functionalized organic–inorganic mesoporous luminescent hybrid materials have been obtained by co-condensation of tetraethyl orthosilicate and the organosilane in the presence of Pluronic P123 surfactant as a template. N,N′-Bis(salicylidene)-1,3-propanediamine (BSPA) and N,N′,N″-tris(salicylidene)-(2-aminoethyl) amine (TSAEA), possessing two different representative structures, were firstly prepared and then functionalized with trialkoxylsilyl groups through the hydrogen transfer reactions between the active hydroxyl groups of the Schiff-base compounds and the internal ester group of isocyanate in 3-(triethoxysilyl)-propyl isocyanate (TESPIC). Schiff-base grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TESPIC) was used as the precursor for the preparation of mesoporous materials. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that they all have high surface area, uniformity in the mesostructure. The resulting materials (BSPA–SBA-15 and TSAEA–SBA-15) exhibit regular uniform microstructures and no phase separation happened because the organic and the inorganic compounds were covalently linked through Si–O bonds via a self-assembly process. Furthermore, these two materials have the similar luminescence range in the blue range.  相似文献   

3.
Two silica-based organic-inorganic hybrid materials composed of phenol (PHE) and ethyl-p-hydroxybenzoate derivatives (abbreviated as EPHBA) complexes were prepared via a sol-gel process. The active hydroxyl groups of PHE/EPHBA grafted by 3-(triethoxysilyl)-propyl isocyanate (TESPIC) through hydrogen transfer reaction were used as multi-functional bridged components, which can coordinate to Tb3+ with carbonyl groups, strongly absorb ultraviolet and effectively transfer energy to Tb3+ through their triplet excited state, as well as undergo polymerization or crosslinking reactions with tetraethoxysilane (TEOS), for anchoring terbium ions to the silica backbone. For comparison, two doped hybrid materials in which rare-earth complexes were just encapsulated in silica-based sol-gel matrices were also prepared. NMR, FT-IR, UV/vis absorption and luminescence spectroscopy were used to investigate the obtained hybrid materials. UV excitation in the organic component resulted in strong green emission from Tb3+ ions due to an efficient ligand-to-metal energy transfer mechanism.  相似文献   

4.
Three kinds of rare earth hybrid materials with enhanced thermostability and photoluminescence properties have been prepared for the first time by using a functionalized GaN matrix as one of the building blocks. A number of silane coupling agents (isocyanate triethoxysilane (ICTES), 3-chloropropyl triethoxysilane (CPTES) and 3-aminopropyl triethoxysilane (APTES)) behave as the covalent linkages for modification by both hydroxylation of GaN and functionalized photoactive ligands (4-mercaptobenzoic acid (MBA), 4-hydroxybenzoic acid (HBA) and nitrobenzoyl chloride (NBC)), resulting in the precursors (MBA-ICTES-GaN, HBA-CPTES-GaN and NBC-APTES-GaN). Subsequently, multicomponent photofunctional rare earth hybrid materials with the three precursors and 1,10-phenanthroline (Phen) are assembled and characterized by their FTIR spectra, UV-vis diffuse reflectance spectra, XRD patterns, and photoluminescent behaviour (luminescence, lifetime, quantum efficiency, and energy transfer). These results reveal that the Eu(3+) hybrids with the MBA-ICTES-GaN unit have a better luminescence intensity ratio, higher quantum efficiency and longer lifetime than those with the HBA-CPTES-GaN and NBC-APTES-GaN units. Meanwhile the hybrid Phen-Tb-HBA-CPTES-GaN possesses a stronger characteristic emission of Tb(3+) ions than the other two hybrids (Phen-Tb-MBA-ICTES-GaN and Phen-Tb-NBC-APTES-GaN). Moreover, two-color-based hybrid materials are fabricated by combining different molar ratios of Eu(3+) and Tb(3+) in the same system (Phen-RE-MBA-ICTES-GaN) with emission at a wavelength of 331 nm (RE = Eu, Tb) and yellow luminescence can be achieved.  相似文献   

5.
1-(2-naphthoyl)-3,3,3-trifluoroacetonate (NTA) was grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TEPIC) and used as the first kind of precursor, and other kinds of precursors (PVPD, PMAA, and PVPDMAA) were synthesized through the addition polymerization reactions of the monomer 4-vinylpyridine and methacrylic acid. Then, these precursors coordinated to rare earth ions, and the three kinds of hybrid polymeric materials were obtained after hydrolysis and copolycondensation with the tetraethoxysilane (TEOS) via a sol-gel process. FTIR, ultraviolet, ultraviolet-visible diffuse reflection and photoluminescent spectra, electronic microscopy diagraphs, room-temperature X-ray diffraction patterns, and TG plots were characterized, and the results reveal that the hybrid materials imbedded into the single polymer (PVPD and PMAA) showed more uniformity in the microstructure, more efficient intramolecular energy transfer between europium ions and the modified ligand NTA-Si and more excellent characteristic emission of europium ions under UV irradiation with higher (5)D(0) luminescence quantum efficiency and longer lifetime than the hybrid materials imbedded into the multipolymer (PVPDMAA).  相似文献   

6.
A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH3)3. PPO-Si(OCH3)3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv).  相似文献   

7.
Waterborne polyurethane (WBU) dispersions synthesized from poly(propylene glycol) (PPG), dimethylolpropionic acid (DMPA), and isophorone diisocyanate (IPDI) with catalysts of different selectivity were prepared via by the conventional prepolymer isocyanate process. Two types of chain extenders were used, ethylene glycol (EG) and propylene glycol (PG), producing polyurethanes. The dispersions were neutralized by the addition of triethylamine. The thermal stability of the materials, obtained as cast films prepared from aqueous dispersions was evaluated by thermogravimetry (TG). It was observed that initial degradation temperatures were above 140 °C, with two-step degradation profiles. The use of a more selective catalyst in the formulations led to materials with higher thermal stability. DTG curves exhibited stages not perceptible in the curves of weight loss, which were mainly influenced by the differences in the formulations. Thermal decomposition of the obtained polyurethanes was followed by TG coupled with FTIR spectroscopy.  相似文献   

8.
Covalently bonded silicate/modified aromatic acid luminescent composites have been prepared from 3-(triethoxysilyl)-propyl isocyanate (TEPIC) grafted salicylic acid and central metal ions (Tb, Zn). The existence of covalent linkages between TEPIC and silica matrices were realized by after hydrolysis and polycondensation processes of ethoxysilyl groups. Luminescence spectra were utilized to characterize the photophysical properties of the obtained hybrid material and the above spectroscopic data reveal that the triplet energy of modified salicylic acid in this favorable hybrid system matches with the emissive energy level of Tb3+. In addition, Zn containing hybrids exhibit a broad band around 420 nm which may be beneficial to fabricate blue emission materials.  相似文献   

9.
A series of novel photoactive hybrid materials with organic parts covalently linked to inorganic parts via the acylamino group have been assembled by sol–gel process. The organic parts as molecular bridge derive from α-hydroxypyridine (HP) functionalized by 3-(triethoxysilyl)-propyl isocyanate (TESPIC). Finally homogeneous, molecular-based hybrid materials with different microstructure (uniform spherical or clubbed) are obtained, in which no phase separation is observed. This may be ascribed as the different coordination behavior of metal ions (Eu3+ (Tb3+) or Zn2+). Red emission of Eu–HP–Si, green emission of Tb–HP–Si and violet-blue luminescence of Zn–HP–Si hybrids can be achieved within these molecular-based hybrid materials. Besides, both Eu(Tb) and Zn are introduced into the same hybrid systems (Eu(Zn)–HP–Si or Tb(Zn)–HP–Si) through the covalent Si–O bond, whose sphere particle size can be modified. Especially the photoluminescence behavior can be enhanced, suggesting that intramolecular energy transfer takes place between inert Zn2+ and Eu3+ (Tb3+) in the covalently bonded hybrid systems.  相似文献   

10.
A series of negatively charged hybrid (organic–inorganic) materials were prepared through sol–gel process. The alkoxysilane-containing sol–gel precursors PEO-[Si(OEt)3]2SO3H were obtained by endcapping polyethylene oxide (PEO) of different molecular weights with 2,4-diisocyanate toluene (TDI), followed by a coupling reaction with phenylaminomethyl triethoxysilane (ND-42) and sulfonation afterwards. The negatively charged precursors were then hydrolyzed and condensed to generate hybrid sol–gel materials, which were characterized by IR, TGA, XRD as well as the conventional ion exchange measurements. The results showed that in the hybrid sol–gel precursors PEO-[Si(OEt)3]2SO3H organic PEO component was incorporated with alkoxysilane-containing ND-42 covalently. As the molecular weight of the precursors increased, thermal stability and cation-exchange capacity of the hybrid material decreased. All the hybrid materials were amorphous and those prepared from higher molecular weight precursors were flexible.  相似文献   

11.
A novel molecular precursor (abbreviated as TAM-Si) derives from thioacetaminde (TAM) modified by 3-(triethoxysilyl)-propyl isocyanate (TEPIC) though the hydrogen transfer addition reaction. Then TAM-Si behaves as functional molecular bridge which coordinates to RE3 (Eu3+, Tb3+) as well as form SiO network with inorganic precursor (TEOS) after a sol–gel process (cohydrolysis and copolycondensation reaction), resulting in the covalently bonded hybrid materials (RE–TAM-Si). On the other hand, the hybrid material of TAM-Si without introduction of RE3+ as well has been obtained. SEM pictures indicate that the TAM-Si show the sphere micromorphology with particle size of micrometer dimension while RE–TAM-Si hybrids present different nanometer particle, which suggests that lanthanide ions has influence on the microstructure of hybrid systems through its coordinated effect. The blue emission for TAM-Si hybrids and the narrow-width green and red emissions were achieved for Tb3+ and Eu3+ ions, respectively, indicating that the intramolecular energy transfer process take place from photoactive group to Tb3+ and Eu3+ ions in these hybrid microsphere systems. Especially the lifetime and quantum efficiency for europium hybrids have been determined.  相似文献   

12.
Abstract

Two chitosan silica hybrid materials were prepared by a two-step process in 78–84% yields using the homogeneous phase reaction of 3-(triethoxysilyl)propyl isocyanate with chitosan dissolved in 1-n-butyl-3-methylimidazolium chloride ionic liquid (~10% w/w), which was followed by NH4OH catalyzed hydrolysis of triethoxysilyl groups and then sol-gel process. These new hybrid materials were shown to adsorb up to about 95% of Fe3+ from 5?×?10?4 M aqueous solution at room temperature in 24?h.  相似文献   

13.
Flexible hybrid xerogels bringing together high optical transparency up to 96%, low shrinkage down to 5.5%, very smooth surface (average roughness of about 0.3 nm) and thermal stability up to 200 °C were achieved as a result of the optimization of sol‐gel preparative method and a new combination of sol‐gel precursors. Two types of hybrid materials (hereafter referred, respectively, as urea‐silicate and amino‐alcohol‐silicate gels) were synthesized in this work. The shrinkage and the transparency of these materials have been drastically improved by using two different derived siloxanes (3‐isocyanate propyltriethoxysilane and 3‐glycidoxypropyltrimethoxysilane) and two amine‐terminated polyether precursors with different molecular weights. A drying process was implemented to minimize yellowing of prepared samples. Under these conditions, we were able to efficiently reproduce a well‐defined imprinted pattern at materials surface by using an original casting mould. The study of the diffraction characteristics of the obtained grating revealed a good reproducibility of the imprinted grating that shows to be comparable with the original mould. The developed methodology opens the possibility to produce diffraction lenses with a wide range of forms by a simple method based on sol‐gel process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
Ternary organic/inorganic/polymeric hybrid material PVP-Eu-(DBM-Si)3 (DBM = dibenzoylmethane; PVP = poly(4-vinylpyridine)) have been synthesized through the coordination bonds. The precursor DBM-Si is obtained by the modification of DBM molecule with a cross-linking reagent TEPIC (3-(triethoxysilyl)-propyl isocyanate), which is used to form the inorganic Si–O–Si networks with TEOS (tetraethoxysilane) after a hydrolysis and polycondensation process. PVP, which is obtained through the polymerization reaction using 4-vinylpyridine as the monomer in the presence of BPO (benzoyl peroxide), is used to form the organic polymeric C–C chains. For comparison, the binary organic/inorganic hybrid material Eu-(DBM-Si)3 was also synthesized simultaneously. FT-IR (Fourier-transform infrared spectra), UV (ultraviolet absorption spectra), UV-DR (ultraviolet–visible diffuse reflection absorption spectra), SEM (scanning electron micrograph), PL (photoluminescence spectroscopy) and LDT (luminescence decay time) measurements are used to investigate the physical properties of the obtained hybrid materials. The results reveal that the ternary hybrids presents more regular morphology, higher red/orange ratio, stronger luminescent intensity, higher 5D0 luminescence quantum efficiency and longer lifetime than the binary one, suggesting the property of the overall hybrid system is improved with the introduction of the organic polymer PVP.  相似文献   

15.
A novel polysilsesquioxane bridge (PPSSi) is synthesized with methylene group modification of phenylphenacyl sulfoxide by isocyanate group from 3-(triethoxysilyl)propyl isocyanate (TEPIC). Then ternary lanthanide (Eu, Tb) hybrids of polysilsesquioxane bridge (PPSSi) and four kinds of polymer chain (polyacrylamide (PAM), polyvinylpyrrolidone (PVP), polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA) were assembled wth coordination bonding. To explore the influence of the different polymeric chains on the properties of lanthanide hybrids, the microstructure and photoluminescent properties of these lanthanide coordination polymer hybrids (PPSSi-Ln-PAM (PVP, PMMA, PEMA)) are compared in detail. Four organic polymer chains with different structures not only can coordinate to the lanthanide ions by their own carbonyl groups, but also can form a polymeric matrix together with the inorganic Si-O network. The results show that all the obtained hybrids could show efficient intramolecular energy transfer and lead to excellent characteristic emission of lanthanide ions. Moreover, the different structures of the polymers induce different microstructures and different photoluminescent behavior (lifetime and quantum efficiency) for these hybrid systems. The PPSSi-Ln-PMMA hybrid leads to the longest lifetime and highest quantum efficiency.  相似文献   

16.
2-Thenoyltrifluoroacetone (TTA) was grafted onto the coupling agent 3-(triethoxysilyl)-propyl-isocyanate to construct the precursor I (TTA-Si), and polymer precursors II (PVPD, PMAA and PVPDMAA) were synthesized through the addition polymerization reactions. Then precursors I and II have coordinated to the rare-earth ions with the carbonyl, carboxyl group or nitrogen atom, respectively, and after hydrolysis and copolycondensation sol-gel process, the three kinds of polymeric hybrids were obtained. FTIR, ultraviolet-visible diffuse reflection and fluorescence absorption spectra, electronic micrographs, room-temperature X-ray diffraction patterns and TG plots were characterized and the results reveal that the hybrid materials showed uniformity in the microstructure, efficient intramolecular energy transfer system and excellent characteristic emission of terbium ions under UV irradiation.  相似文献   

17.
杂化硅胶整体材料研磨法制备混合型高效液相色谱固定相   总被引:1,自引:0,他引:1  
王照地  张璐  郭丙倩  王世革  黄明贤 《色谱》2019,37(5):484-490
以聚乙二醇(PEG)为致孔剂,四甲氧基硅烷(TMOS)和乙烯基三甲氧基硅烷(VTMS)为杂化硅胶前驱体,在乙酸催化作用下使硅烷发生水解,在尿素加热分解提供的碱性环境下水解的硅烷进一步缩聚得到杂化硅胶整体材料。将此整体材料用球磨机研磨,然后用三羟甲基氨基甲烷处理,并洗涤干燥得到粒径为3 μm左右的硅胶颗粒。探索了不同反应条件对硅胶颗粒的大小、比表面积和孔径、表面形貌和分散性的影响;当TMOS和VTMS体积比为3:1时可以得到孔径为7.5 nm和比表面积为245 m2/g的硅胶颗粒。通过对所制得的硅胶颗粒表面进行C18(十八烷基二甲基氯硅烷)键合修饰和巯基-烯点击反应,得到混合型高效液相色谱固定相。对此固定相的测试结果表明以上硅胶色谱填料的制备方法具有一定的实用性。  相似文献   

18.
A series of polymer-silica hybrid materials consisting of amino-terminated anionic waterborne-polyurethane (WPU) and inorganic silica particles have been prepared through a sol-gel process in the absence of an external catalyst. Typically, amino-terminated anionic WPU was first synthesized from polycaprolactone, dimethylol propionic acid, and 4,4′-methylenebis(cyclohexyl isocyanate) with specific molar ratios, followed by further reaction with triethylamine and triethylene tetramine to give as-prepared WPU. The WPU obtained was characterized by FTIR spectroscopy and gel permeation chromatography. Subsequently, a series of hybrid materials with different silica contents were prepared by performing sol-gel reactions with tetraethyl orthosilicate (TEOS) in an amino-terminated WPU matrix without the addition of an external catalyst. This was followed by examination by transmission electron microscopy and 29Si solid-state NMR. The terminated primary amine groups attached to the as-prepared WPU chains functioned as an internal base catalyst for the sol-gel process of TEOS. The effect of composition on the thermal stability, mechanical strength, surface wettability, and optical clarity of the hybrid materials was evaluated by the thermogravimetric analysis, dynamic mechanical analysis, contact angle measurement, and UV-visible transmission spectroscopy, respectively.  相似文献   

19.
We report the preparation of a new class of lamellar hybrid organic–inorganic materials obtained by self-assembly of bridged organosilica precursors containing long alkylene chains during the sol–gel process. The self-assembly is induced by lipophilic van der Waals interactions. The introduction of –SS– bonds in the core of the alkylene chains permitted the functionalisation of lamellar materials, which were subsequently transformed into SH and –SO3H groups. This methodology was extended to the formation of lamellar hybrid materials containing amino groups thanks to CO2 as bridging groups as well as the formation of lamellar hybrid materials containing carboxylic groups. In this last case, the hydrolysis and polycondensation of cyanoalkyltrialkoxysilanes permitted the one pot synthesis of lamellar hybrid materials thanks to in situ hydrogen bonds formation between carboxylic acids groups. All these functional lamellar materials exhibit a very high chelating capability towards transition metal and lanthanide ions.  相似文献   

20.
为提高具抗凝血性能的阿魏酸分子在水中的溶解性进而提高其药效,利用DBI(3,4-二羟基苯甲醛)、PEG(聚乙二醇4000)和纳米Fe3O4,采用接枝的方法制备了水溶性纳米Fe3O4-DBI-PEG-阿魏酸抗凝血杂化材料,用IR、1H NMR、TG、SEM、TEM、VSM和粒度测试方法表征了产物。结果表明阿魏酸(FA)接枝在了经过DBI-PEG活化后的纳米Fe3O4氧化物表面。杂化材料具有良好的水溶性(溶解度大于10 mg·mL-1)和顺磁性。抗凝血试验表明相同条件下杂化材料的抗凝血时间和复钙时间比阿魏酸要长,杂化材料的活化部分凝血活酶时间(APTT)和凝血酶原时间(PT)比空白组要长,杂化材料的抗凝血时间随浓度的增大而延长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号