首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Zhengzhong Zhang 《中国物理 B》2021,30(11):117305-117305
A magnetic field-controlled spin-current diode is theoretically proposed, which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes. By applying a spin bias VS across the junction, a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists. More interestingly, if we applied an external magnetic field on the quantum dot, we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias, while the charge current always decays to zero in the Coulomb blockade regime. Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias, while the net charge through the device is almost zero. Different from the traditional charge current diode, this design can change the polarity direction and rectifying ability by adjusting the external magnetic field, which is very convenient. This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.  相似文献   

2.
We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The IV characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa.  相似文献   

3.
《Physics letters. A》2020,384(24):126607
We study spin-dependent electron transport properties of a thermally driven interacting quantum dot. When an external magnetic field is applied to the quantum dot, the effective transmissions of spin-up and spin-down electrons are separated from each other and have a perfect mirror symmetry with respect to the incident energy at a certain gate voltage. A pure spin current can be induced in the system and modulated by a magnetic field. Under certain magnetic field strengths, a larger pure spin current can be obtained at gate voltages with the values in a range, not just at a specific voltage. These results indicate that the system can be worked as a pure spin current generator.  相似文献   

4.
He Gao 《Physics letters. A》2008,372(35):5695-5700
We have investigated the mesoscopic transport properties of a quantum dot embedded Aharonov-Bohm (AB) interferometer applied with a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunneling current is sensitive to the spin-flip effect. The spin-flipped electrons tunneling from the direct channel and the resonant channel interfere with each other to form spin-polarized tunneling current components. The non-resonant tunneling (direct transmission) strength and the AB phase φ play important roles. When the non-resonant tunneling (background transmission) exists, the spin and charge currents form asymmetric peaks and valleys, which exhibit Fano-type line shapes by varying the source-drain bias voltage, or gate voltage. The AB oscillations of the spin and charge currents exhibit distinct dependence on the magnetic flux and direct tunneling strength.  相似文献   

5.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

6.
By means of the Keldysh Green's function method, we investigate the spin-polarized electron transport in a three-terminal device, which is composed of three normal metal leads and two serially-coupled quantum dots (QDs). The Rashba spin-orbit interaction (RSOI) is also considered in one of the QDs. We show that the spin-polarized charge current with arbitrary spin polarization can be obtained because of the quantum spin interference effect arising from the Rashba spin precession phase, and it can be modulated by the system parameters such as the applied external voltages, the RSOI strength, the QD levels, as well as the dot-lead coupling strengths. Moreover, a fully spin-polarized current or a pure spin current without any accompanying charge current can also be controlled to flow in the system. Our findings indicate that the proposed model can serve as an all-electrical spin device in spintronics field.  相似文献   

7.
We investigate theoretically the spin caloritronic transport properties of a stabie 1,3,5-triphenylverdazyl(TPV)radical sandwiched between Au electrodes through different connection fashions.Obvious spin Seebeck effect can be observed in the para-connection fashion.Furthermore,a pure spin current and a completely spin-polarized current can be realized by tuning the gate voltage.Furthermore,a 100% spin polarization without the need of gate voltage can be obtained in the meta-connection fashion.These results demonstrate that TPV radical is a promising material for spin caioritronic and spintronic applications.  相似文献   

8.
The influence of magnetic vector potential barrier (MVPB) on the spin-polarized transport of massless Dirac particles in ferromagnetic graphene is studied theoretically. The phenomenon of Klein tunneling of relativistic particles across a rectangular potential barrier prevents any of the massless fermions from being confined but they can be electrically confined by quantum dots with integrable dynamics (Bardarson et al., 2009) [36]. Utilization of only the in-plane exchange splitting in the ferromagnetic graphene cannot produce 100% spin polarization. This tunneling can be confined using the magnetic vector potential barrier, which leads to high degree of spin polarization. By combining the orbital effect and the Zeeman interaction in graphene junction, it is found that the junction mimics behavior of half-metallic tunneling junction, in which it acts as a metal to particles of one spin orientation but as an insulator or a semiconductor to those of the opposite orientation. The idea of the half-metallic tunneling junction can provide a source of ∼100% spin-polarized current, which is potentially very useful. Adjustment of the position of the Fermi level in ferromagnetic layer by placing a gate voltage on top of the ferromagnetic layer shows that reverse of the orientation of the completely spin-polarized current passing through the junction is controlled by adjusting the gate voltage. These interesting characteristics should lead to a practical gate voltage controlled spin filtering and spin-polarized switching devices as a perfect spin-polarized electron source for graphene-based spintronics.  相似文献   

9.
Nonequilibrium Green's function is uscd to study spin-polarized electron tunneling through a quantum dot connected to two ferromagnetic electrodes with different orientations via two insulating barriers (FM/I/QD/I/FA.f). Intra-level Coulomb interaction in the dot is considered. General formula of tunneling current which can be used for arbitrary angle between the two electrodes' magnetizations is derived for both the weak and strong intra-dot interactions.We find that the transport current can be divided into two parts: the current with the spin-flip and the current without the spin-flip, which critically depend on the linewidth function near the Fermi level of the ferromagnetic electrodes. If a magnetic field is applied in the quantum dot, different behaviors will be found for weak and strong interactions.  相似文献   

10.
《中国物理 B》2021,30(9):97401-097401
We investigate the spin-related currents and tunnel magnetoresistance through a quantum dot, which is side-coupled with a Majorana fermion zero mode and two thermal-driven ferromagnetic electrodes. It is found that the interplay of Majorana fermion and electrodes' spin polarization can induce a nonlinear thermal-bias spin current. This interplay also decreases the total magnitude of spin or charge current, in either parallel or antiparallel configuration. In addition, a thermal-driven negative tunnel magnetoresistance is found, which is an unique feature to characterize Majorana fermion.With large temperature difference, a step phenomenon is observed in gate tuned spin-up current. When the coupling between quantum dot and topological superconductor is strong enough, this step will evolve into a linear relation, revealing Majorana fermion's robustness.  相似文献   

11.
We study the spin-polarized transport and Fano resonance in an Aharonov-Bohm (AB) interferometer with an embedded quantum dot, where the dot is irradiated by continuous circularly polarized light. Compared with the conventional Fano form, the resonance line shape is found to be deformed by the interplay between the external irradiation and the Coulomb repulsion. The Fano resonance peaks are split due to the shift of the effective energy level in the dot by Rabi oscillation of electron-heavy hole pairs. The direction and magnitude of spin current polarization can be modulated by the device parameters. Furthermore, the direct tunneling between two leads can induce a sharp sign reversal of spin polarization, the system thus operates as a rectifier for spin current polarization.  相似文献   

12.
We propose a scheme for the effective polarization and manipulation of electron spin by using a quantum dot with both charge and spin bias. Using the equation of motion for Keldysh nonequilibrium Green function, we study the spin accumulation and polarization for the system. Through analytical analysis and a few numerical examples, it is demonstrated that fairly large spin accumulation and polarization can be produced due to the breakingsymmetry of the chemical potential for different electron spin in the leads. Moreover, the direction and the strength of the spin polarization can be conveniently controlled and tuned by varying the charge bias or the gate voltage.  相似文献   

13.
张正中  沈瑞  盛利  王瑞强  王伯根  邢定钰 《中国物理 B》2011,20(4):47504-047504
A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled,the proposed spin current switching effect may have potential applications in future spintronics.  相似文献   

14.
《Current Applied Physics》2019,19(8):917-923
Spin-momentum locked (SML) topological surface state (TSS) provides exotic properties for spintronics applications. The spin-polarized current, which emerges owing to the SML, can be directly detected by performing spin potentiometric measurement. We observed spin-polarized current using a bulk insulating topological insulator (TI), Bi1.5Sb0.5Te1.7Se1.3, and Co as the ferromagnetic spin probe. The spin voltage was probed with varying the bias current, temperature, and gate voltage. Moreover, we observed non-local spin-polarized current, which is regarded as a distinguishing property of TIs. The spin-polarization ratio of the non-local current was larger than that of the local current. These findings could reveal a more accurate approach to determine spin-polarization ratio at the TSS.  相似文献   

15.
白旭芳  迟锋  郑军  李亦楠 《中国物理 B》2012,21(7):77301-077301
We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot. The electrons are driven purely by the temperature gradient in the absence of an electric bias and a magnetic field. In the Coulomb blockade regime, we find two ways to reverse the spin accumulation. One is by adjusting the QD energy level with a fixed temperature gradient, and the other is by reversing the temperature gradient direction for a fixed value of the dot level. The spin accumulation in the QD can be enhanced by the magnitudes of both the leads’ spin polarization and the asymmetry of the dot-lead coupling strengths. The present device is quite simple, and the obtained results may have practical usage in spintronics or quantum information processing.  相似文献   

16.
We propose a mechanism by which an open quantum dot driven by two ac (radio frequency) gate voltages in the presence of a moderate in-plane magnetic field generates a spin-polarized, phase-coherent dc current. The idea combines adiabatic, nonquantized (but coherent) pumping through periodically modulated external parameters and the strong fluctuations of the electron wave function existent in chaotic cavities. We estimate that the spin polarization of the current can be observed for temperatures and Zeeman splitting energies of the order of the single-particle mean level spacing.  相似文献   

17.
We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.  相似文献   

18.
We consider a single electron in a 1D quantum dot with a static slanting Zeeman field. By combining the spin and orbital degrees of freedom of the electron, an effective quantum two-level (qubit) system is defined. This pseudospin can be coherently manipulated by the voltage applied to the gate electrodes, without the need for an external time-dependent magnetic field or spin-orbit coupling. Single-qubit rotations and the controlled-NOT operation can be realized. We estimated the relaxation (T1) and coherence (T2) times and the (tunable) quality factor. This scheme implies important experimental advantages for single electron spin control.  相似文献   

19.
张平  薛其坤  谢心澄 《物理》2004,33(4):238-241
从理论上研究了相互作用量子点在外部旋转磁场下的非平衡自旋输运性质,研究结果表明,量子点中的相干自旋振荡可以导致自旋电流的产生,当计入库仑关联相互作用后,近藤共振效应受外部进动磁场的影响很强,特别是当磁场的进动频率与塞曼能移满足共振条件时,每个自旋近藤峰就会劈裂为两个自旋共振峰的叠加,在低温强耦合区,这种近藤型共隧穿过程对自旋电流带来重要贡献。  相似文献   

20.
We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noncollinear magnetic field effects, respectively. In the collinear magnetic field case,we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallelconfiguration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号