首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peng HI  Miller BL 《The Analyst》2011,136(3):436-447
The emerging field of plasmonics, the study of electromagnetic responses of metal nanostructures, has revealed many novel signal enhancing phenomena. As applied to the development of label-free optical DNA biosensors, it is now well established that plasmon-based surface enhanced spectroscopies on nanostructured metal surfaces or metal nanoparticles can markedly improve the sensitivity of optical biosensors, with some showing great promise for single molecule detection. In this review, we first summarize the basic concepts of plasmonics in metal nanostructures, as well as the characteristic optical phenomena to which plasmons give rise. We will then describe recent advances in optical DNA biosensing systems enabled by metal nanoparticle-derived plasmonic effects, including the use of surface enhanced Raman scattering (SERS), colorimetric methods, "scanometric" processes, and metal-enhanced fluorescence (MEF).  相似文献   

3.
We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies.  相似文献   

4.
Nanosized surface-enhanced Raman scattering (SERS) substrates fabricated by the controlled growth of metal nanostructures on water-dispersed two-dimensional nanomaterials can open a new avenue for SERS analysis of liquid samples in biological fields. In this work, regular and uniform Ag nanostructures were grown on the surface of graphene oxide (GO) through a microwave-assisted hydrothermal method. Polyamidoamine (PAMAM) dendrimers were assembled on the surface of GO to form GO/PAMAM templates for growing Ag nanostructures, which are primarily comprised of Ag dimers and trimers. The prepared Ag/GO nanocomposites are highly dispersed and stable in aqueous solution and may be used as substrates for enhanced Raman detection of rhodamine 6?G (R6G) in aqueous solution. This special substrate provides high-performance SERS and suppresses R6G fluorescence in aqueous solution and is promising as a nanosized material for the enhanced Raman detection of liquid samples in biological diagnostics.  相似文献   

5.
Larmour IA  Graham D 《The Analyst》2011,136(19):3831-3853
Surface enhancement can provide improved detection sensitivity in a range of optical spectroscopies. When applied to bioanalysis these enhanced techniques allow for the detection of disease biomarkers at lower levels, which has a clear patient benefit. However, to achieve widespread clinical use of surface enhanced techniques there remain several "grand challenges". In this review we consider the substrates employed to achieve enhancement before reviewing each enhanced optical technique in detail; surface plasmon resonance, localised surface plasmon resonance, surface enhanced fluorescence, surface enhanced infrared absorption spectroscopy and surface enhanced (resonance) Raman spectroscopy. Finally we set out the "grand challenges" currently facing the field.  相似文献   

6.
Metallic heterogeneous nanostructures with plasmonic functionality have attracted great attention in the field of plasmon-enhanced electrocatalysis, where surface plasmons produced under light excitation could facilitate the overall electrocatalytic performances. Owing to their controllability, multifunctionality, and complexity, heterogeneous metallic nanostructures take advantages of the properties from individual components and synergistic effects from adjacent components, thus may achieve remarkable electrocatalytic performances. This review highlights the state-of-the-art progress of the application of metallic heterostructures for plasmon-enhanced electrocatalysis. First, a brief introduction to plasmonic heterogeneous nanostructures is demonstrated. Then, fundamental principles of localized surface plasmon resonance and the underlying mechanisms of plasmonic heterogeneous nanostructures in catalysis are discussed. This is followed by a discussion of recent advances of plasmonic heterogeneous nanostructures in plasmon-enhanced electrocatalysis, in which the enhanced activity, selectivity, and stability are particularly emphasized. Finally, an outlook of remaining challenges and future opportunities for plasmonic heterogeneous nanomaterials and plasmon-related electrocatalysis is presented.  相似文献   

7.
何欣  蒋彩云  丁涛  王玉萍 《应用化学》2022,39(8):1167-1176
表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)是一种振动光谱技术,可直接识别目标分析物。在分析应用中,SERS信号的重现性极其重要,而这在很大程度上取决于SERS基底结构的均匀性。目前,SERS基底的重现性一直是制约该技术在分析测试中广泛应用的瓶颈,规则排列的纳米结构构成的有序化SERS基底的可控制备是该领域发展的前沿和趋势。本文就SERS基底的有序化制备方法及其应用进行了总结,分析了自组装法、光刻技术和模板辅助法所制备的有序SERS基底的特征、有序性形成原理和在分析测试中应用的可行性,为拓展SERS的实际应用提供一定的参考。  相似文献   

8.
Enhancement of fluorescent radiation is of great importance for applications including biological imaging, high-sensitivity detectors, and integrated light sources. Strong electromagnetic fields can be created around metallic nanoparticles or in gap of nanostructures, where the local state density of radiating mode is then dramatically enhanced. While enhanced fluorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs, simultaneous mediation of absorption and emission processes of fluorescent emitters remains challenging in metallic nanostructures. Here, we investigate fluorescent emission mediated by metal-dielectric-metal fishnet metasurface, in which localized surface plasmon (LSP) and magnetic plasmon polaritons (MPPs) modes are coupled with absorption and emission processes, respectively. For absorption process, coupling of the LSP mode enables spatially-selective excitation of the fluorescent emitters by rotating the polarization of the pump laser beam. In addition, the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the fluorescent emission by introducing a rectangular fishnet structure. All the experimental observations are further corroborated by finite-difference time-domain simulations. The structure reported here has great potentialfor application to color light-emitting devices and nanoscale integrated light sources.  相似文献   

9.
You crack me up: A topographically patterned PDMS stamp was coated with thin metal film and swelled under organic vapor to induce the tunable cracking of the brittle film into metallic nanostructures (see SEM images, scale bars 1?μm). UV/Vis spectra, OLED efficiency, and SERS spectra demonstrate the fine controllability of the metallic nanostructures, the well-ordered and highly regulable surface plasmons, and the facile fabrication process.  相似文献   

10.
Olivine-type LiFePO4 thin films were grown on MgO (1 0 0) substrates by pulsed laser deposition (PLD). The formation of an original nanostructure is evidenced by transmission electron microscopy measurements. Indeed, on focused ion beam prepared cross sections of the thin film, we observe, the amazing formation of metallic iron/olivine nanostructures. The appearance of such a structure is explained owing to a topotactic relation between the two phases as well as a strong Mg diffusion from the substrate to the film surface. Magnesium migration is thus concomitant with the creation of metallic iron domains that grow from the core of the film to the surface leading to large protuberances. To the best of our knowledge, this is the first report on iron extrusion from the olivine-type LiFePO4.  相似文献   

11.
We have developed a simple and flexible chemical method to synthesize orderly metallic nanoaggregates using a designed SiO 2-Au core-shell building block. The number of the building blocks in a nanoaggregate is tunable from one to three. These metal nanostructures can generate an enlarged localized electromagnetic field through surface plasmon resonance and enhance the optical signals of the photoactive molecules within this electromagnetic field. Aggregates of metallic nanoparticles provide a higher signal enhancement than well-dispersed nanoparticles combined. The level of signal enhancement is determined by the number of building blocks in a nanoaggregate. The signal enhancement of the nanoaggregates has been verified with a near-infrared (NIR) dye. In the NIR region, biological samples have low background signals and deeper penetration of radiation. The application of these NIR enhanced metal nanostructures will open a significant approach for sensitive detection of biological samples.  相似文献   

12.
One‐dimensional iron oxide materials fabricated on conducting glass substrates and their unique properties make these nanostructures promising candidates for a wide range of applications. Herein, vertically oriented α‐Fe2O3 nanorod arrays synthesized under hydrothermal conditions over a large area are described, as an active platform for surface‐enhanced resonance Raman scattering (SERRS) and surface‐enhanced fluorescence (SEF). From scanning electron microscopy images the formation of a homogeneous distribution of vertically oriented rods in a large area is confirmed. For activating the localized surface plasmon resonances, which are responsible for SERRS and SEF, a 6 nm layer of Ag is deposited onto the α‐Fe2O3 nanorod arrays by physical vapor deposition to form Ag islands.  相似文献   

13.
Surface-Enhanced Raman Scattering (SERS) spectroscopy has experienced a rapid growth over the past 30 years, and has become a valuable tool in various research areas. In conjunction with recent explosive development of nanoscience and nanotechnology, the SERS-active substrates have also expanded from traditional Group 11 metals (Au, Ag, Cu) to non-Group 11 nanostructures. This paper gives an overview of historical advances in the use of non-Group 11 nanostructures as substrates for SERS. Several possible mechanisms and important factors for SERS from non-Group 11 nanostructures are discussed in detail. The SERS from non-Group 11 nanostructures provides many significant applications in surface, interface analysis and biochemical detection. It is reasonable to believe that the advancement in the non-Group 11 nanostructures-based SERS-active substrates will lead to a more promising future for the SERS technology in surface science, spectroscopy and biomedicine.  相似文献   

14.
Au/Pd octopods, nanostructures with eight branches and a primarily Au interior, have been synthesized as size-controlled samples through the manipulation of seed-mediated co-reduction. The position of their localized surface plasmon resonance can be controllably tuned throughout the visible and near-infrared regions, and this response is correlated with the structural features (branch length and tip width) of the octopods. These Au/Pd octopods were also found to be highly sensitive to changes in the local refractive index of the surrounding media and suitable substrates for surface enhanced Raman spectroscopy. These findings, coupled with their unique composition, highlight the multifunctional capabilities of the Au/Pd octopods and provide insight into the optical properties of architecturally controlled bimetallic nanostructures.  相似文献   

15.
22Porous silicon (PS) prepared from an n-type Si(100) wafer was utilized as a reducing agent and a nanosubstrate for the reduction of rhodium complex ions [RhCl6]3- from aqueous solution to metallic Rh nanostructures on the surface of the n-type PS. The morphology and the electronic properties of the PS layers as well as the rhodium nanostructures were studied by field emission scanning electron microscopy, X-ray absorption fine structures spectroscopy, and X-ray excited optical luminescence (XEOL). The average particle size of Rh nanostructures on PS was estimated to be approximately 7 nm by the X-ray diffraction pattern. The specificity ofXEOL allowed for the investigation of the effect of Rh nanostructures on the optical properties of PS.  相似文献   

16.
Surface‐enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single‐molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble‐metal‐free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble‐metal‐free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene‐based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble‐metal‐free materials for enhancing detection sensitivity can further fuel the development of SERS‐related applications.  相似文献   

17.
Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip‐enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface‐enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single‐molecule level for applications ranging from materials sciences to life sciences.  相似文献   

18.
Three‐dimensional nanostructured metallic substrates for enhanced vibrational spectroscopy are fabricated by self‐assembly. Nanostructures consisting of one to 20 depositions of 13 nm‐diameter Au nanoparticles (NPs) on Au films are prepared and characterized by means of AFM and UV/Vis reflection–absorption spectroscopy. Surface‐enhanced polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) is observed from Au NPs modified by the probe molecule 4‐hydroxythiophenol. The limitation of this kind of substrate for surface‐enhanced PM‐IRRAS is discussed. The surface‐enhanced Raman scattering (SERS) from the same probe molecule is also observed and the effect of the number of Au‐NP depositions on the SERS efficiency is studied. The SERS signal from the probe molecule maximizes after 11 Au‐NP depositions, and the absolute SERS intensities from different batches are reproducible within 20 %. In situ electrochemical SERS measurements show that these substrates are stable within the potential window between ?800 and +200 mV (vs. Ag/AgCl/sat. Cl?).  相似文献   

19.
Chlorosomes are one of the most unique natural light‐harvesting antennas and their supramolecular nanostructures are still under debate. Chlorosomes contain bacteriochlorophyll (BChl)‐c, d and e molecules and these pigments self‐aggregate under a hydrophobic environment inside a chlorosome. The self‐aggregates are mainly constructed by the following three interactions: hydrogen bonding, coordination bonding and π–π stacking. Supramolecular nanostructures of self‐aggregated BChls have been widely investigated by spectroscopic and microscopic techniques. Model compounds of such chlorosomal BChl molecules have been synthesized and the effects of esterified long alkyl chains at the 17‐propionate residue for their self‐aggregation have been studied. Structurally simple zinc chlorophyll derivatives possessing an oligomethylene chain as the esterifying group at the 17‐propionate residue were prepared as chlorosomal BChl models. The synthetic zinc BChls self‐aggregated in nonpolar organic solvents to give precipitates. The resulting insoluble self‐aggregated solids were investigated on a variety of substrates, including hydrophobic, neutral and hydrophilic substrates, by visible absorption, circular dichroism and polarized light absorption spectroscopies, as well as atomic force, transmission electron and scanning electron microscopies. The self‐aggregates of synthetic Zn‐BChls formed rods with an approximately 5 nm diameter and wires with further elongated growth of the rods (aspect ratio >200). The diameter size was consistent with that estimated for natural chlorosomal rods in a filamentous anoxygenic phototroph, Chloroflexus aurantiacus. The supramolecular formation and stability of the rod on the examined substrates depended on the length of an oligomethylene chain at the 17‐propionate residue as well as on the surface properties. Especially, the number of the 5 nm rods on the substrates increased with an elongation of the chain.  相似文献   

20.
Previously reported studies indicate that aluminum nanostructured substrates can potentially find widespread use in metal-enhanced fluorescence (MEF) applications particularly in the UV or near-UV spectral region toward label-free detection of biomolecules. MEF largely depends on several factors, such as chemical nature, size, shape of the nanostructure and its distance from the fluorophore. A detailed understanding of the MEF and its distance-dependence are important for its potential application in biomedical sensing. Our goal is to utilize intrinsic protein fluorescence for label-free binding assays. This is made possible by the use of metallic nanostructures which provide localized excitation and enhanced fluorescence of UV fluorophores and will also provide a way to separate the surface-bound proteins from the bulk samples. We evaluated varied probe distances from plasmonic nanostructures by the well-established layer-by-layer (LbL) technique. The investigated proteins were adsorbed on different numbers of alternate layers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH). Bovine serum albumin (BSA) was electrostatically attached to the positively charged PAH layer, and goat and rabbit IgG were attached to negatively charged PSS layer. We obtained a maximum of a ~ 9 fold increase in fluorescence intensity from BSA at a distance of ~9 nm from the Al nanostructured surface. Approximately 6- and 7- fold increases were observed from goat and rabbit IgG at a distance of ~8 nm, respectively. The minimum lifetimes were about 3-fold shorter than those on bare control quartz slides for all three proteins. The time-resolved intensity decays were analyzed with a lifetime distribution model to understand the distance effect on the metal-fluorophore interaction in detail. The present study indicates the distance dependence nature of metal-enhanced intrinsic fluorescence of proteins and potential of LbL assembly to control the metal-to-fluorophore distance in the UV wavelength region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号