首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

2.
A novel approach to fabricate polymer brushes on the surface of carbon nanotubes (CNTs) is proposed. Carboxyl groups on the surface of chemically oxidized CNTs were reacted with hexamethylene diisocyanate, followed by a reaction with methacrylamide to give terminal vinyl groups‐functionalized CNTs, so called “CNT‐mer.” The synthetic procedure was investigated step‐by‐step and the synthesized CNT‐mer was used to grow polystyrene (PS) from CNTs by a simple in situ polymerization in the presence of a thermal initiator. By employing 1H NMR, X‐ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and light scattering, the experimental results were verified. Using this approach, 45% PS with respect to CNTs are grafted on the surface of CNTs with about 4.0 nm thickness. This novel technique would provide a facile route to prepare tailor‐made polymer brushes on the surface of CNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6394–6401, 2006  相似文献   

3.
Hydroxyl chain‐end functionalizations of polymeric organolithium compounds with oxetane (trimethylene oxide) were studied in benzene at 25 °C. Functionalizations of poly(styryl)lithium and polystyrene‐oligo‐butadienyllithium proceed efficiently to form the corresponding ω‐hydroxypropyl‐functionalized polymers in 98 and 97% isolated yields, respectively. No nonfunctional polymer (≤1–2%) was detected by thin layer chromatography (TLC) analysis for either polymer. All functionalized polymers were characterized by 13C and 1H NMR analyses; no evidence for oxetane oligomerization at the chain end was observed. The MALDI‐TOF mass spectrum of ω‐hydroxypropylpolystyrene was consistent with the expected structure without any detectable oligomerization of oxetane. A small, but detectable series of peaks corresponding to nonfunctional polystyrene was also observed in the MALDI‐TOF mass spectrum. The functionalization of the adduct of 1,1‐diphenylethylene and PSLi produced the corresponding ω‐hydroxypropyl‐functionalized polymer in only 86% isolated yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2684–2693, 2006  相似文献   

4.
Novel nickel(II) bisbenzimidazole complexes were prepared via a three‐step synthetic procedure consisting of aniline/diacid condensation, ligand N‐alkylation, and metal complexation. The complexes were characterized by X‐ray crystallography and found to possess a pseudotetrahedral geometry. Upon activation with methylaluminoxane, these nickel bisbenzimidazoles did not polymerize simple olefins (e.g., ethylene, propylene, and 1‐butene) but were found to carry out the rapid and efficient polymerization of norbornene. The polynorbornene products were characterized by gel permeation chromatography/light scattering, 13C NMR, and IR, and their Mark–Houwink and dn/dc parameters were determined. The molecular weights of the polynorbornenes were very high (weight‐average molecular weight = 587,000–797,000 g/mol). 13C NMR suggested that the polymerization occurred via vinyl addition (i.e., a 2,3‐linked polymer); no ring‐opened product was observed. Thermogravimetric analysis indicated that the polynorbornenes were stable up to 400 °C under nitrogen. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2095–2106, 2003  相似文献   

5.
Natural human hair was successfully modified by the graft polymerization of trimethylene carbonate, β‐propiolactone, ε‐caprolactone, glycidol, ε‐caprolactam, and 5,5‐dimethyl‐1,3‐dioxane‐2‐thione. In contrast, we could not modify natural human hair by the graft polymerization of oxetane under similar conditions. The model reaction suggested that the main initiating species in these polymerizations were the amino, thiol, and hydroxyl groups in hair, which could induce ring‐opening polymerization. Among the tested monomers, β‐propiolactone was most effective for hair modification with its graft polymer, whose concentration was as high as 0.5 g/g of hair though polymerization under mild conditions. The effects of the hair pretreatment and polymerization temperature on the weight ratio of the grafted polymers were also investigated. Hair modified by grafted polymers was characterized with scanning electron microscopy and Fourier transform infrared measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 736–744, 2007  相似文献   

6.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

7.
A novel, near‐monodisperse, well‐defined ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(propylene oxide)‐b‐poly[2‐(dimethylamino)ethyl methacrylate], was synthesized via oxyanion‐initiated polymerization. The initiator was a telechelic‐type potassium alcoholate prepared from poly(propylene glycol) and KH in dry tetrahydrofuran. The copolymers produced were characterized by Fourier transform infrared, 1H NMR, and gel permeation chromatography (GPC). GPC and 1H NMR analyses showed that the products obtained were the desired copolymers, with narrow molecular weight distributions (ca. 1.09–1.11) very close to that of the original poly(propylene glycol). 1H NMR, surface tension measurements, and dynamic light scattering all indicated that the triblock copolymer led to interesting aqueous solution behaviors, including temperature‐induced micellization and very high surface activity. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 624–631, 2002; DOI 10.1002/pola.10144  相似文献   

8.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   

9.
In this study, we grafted water‐soluble biocompatible polymer, poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA), onto the surface of multi‐walled carbon nanotubes (MWNTs). The reversible addition‐fragmentation chain transfer (RAFT) agents, dithioesters, were successfully immobilized onto the surface of MWNTs first, PHPMA chains were then subsequently grafted onto MWNTs via RAFT polymerization by using dithioesters immobilized on MWNTs as RAFT agent. FTIR, XPS, 1H NMR, Raman and TGA were used to characterize the resulting products and to determine the content of water‐soluble PHPMA chains in the product. The MWNTs grafted with PHPMA chains have good solubility in distilled water, PBS buffer, and methanol. TEM images of the samples provide direct evidence for the formation of a nanostructure that MWNTs coated with polymer layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2419–2427, 2006  相似文献   

10.
The present report describes the synthesis of a densely grafted copolymer consisting of a rigid main chain and flexible side chains by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from an ATRP initiator‐bearing poly(phenylacetylene) [poly(BrPA)]. Poly(BrPA) was obtained by the polymerization of 4‐ethynylbenzyl‐2‐bromoisobutyrate using [Rh(NBD)Cl]2 in the presence of Et3N. The 1H NMR spectrum showed that poly(BrPA) was in the cis‐transoid form. Upon heating at 30 °C for 24 h the cis‐transoid form was maintained. ATRP of MMA from the poly(BrPA) was carried out at 30 °C using CuX (X = Br, Cl) as the catalyst and N,N,N′,N′,N′‐pentamethyldiethylenetriamine as the ligand, and the resulting graft copolymers were investigated with 1H NMR and SEC. To analyze the graft structure in more detail, the graft copolymers were hydrolyzed with KOH and the resultant poly(MMA) part was investigated with 1H NMR and SEC. The polydispersity indexes of 1.25–1.45 indicated that the graft copolymers have well‐controlled side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6697–6707, 2006  相似文献   

11.
A new series of sulfide‐substituted poly(1,4‐phenylene vinylene) derivatives ( S1PPV–S3PPV ) with different composition ratios were successfully synthesized via the Gilch route. The CdSe/ZnS were grafted to the sulfur atoms by ligand exchange reaction. The grafted CdSe/ZnS contents were determined from TGA analysis to be from 4.6 to 37.8%. A new peak at 1151 cm?1 formed in FT‐IR after ligand exchange, which is attributed to the force formation between sulfur and CdSe. The GPC results show that the molecular weights of final polymers became higher after ligand exchange. Thin films of obtained polymers emitted bright green and yellow light with the max emission peak located from 546 to 556 nm. Double‐layer LEDs with an ITO/PEDOT/polymer/Ca/Al configuration were fabricated to evaluate the potential use of these polymers. The turn‐on voltages of the devices were about 4–5 V. As the CdSe/ZnS content increased in grafted polymers, the device performance was significantly enhanced as compared to pristine polymers. In the case of S3PPV , the double‐layer device showed a maximum luminance of 6073 cd/m2 with a current yield of 0.82 cd/A. The maximum luminance and current yield was enhanced to 13,390 cd/m2 and 2.25 cd/A by grafting CdSe/ZnS onto polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5378–5390, 2006  相似文献   

12.
Poly(2,2,2‐trifluoroethyl methacrylate) (PTFEMA), a partially fluorinated polymer, was directly grafted from silicon wafer surfaces by a surface‐initiated atom‐transfer radical polymerization (ATRP). The polymer layer thickness increased linearly with monomer conversion and molecular weight of free polymers in solution. The thickness was mainly determined by the experimental conditions such as activator/deactivator ratio, monomer/catalyst ratio, and monomer concentration. PTFEMA layers of more than 100‐nm thick were obtained. The grafted PTFEMA chains were “living” and allowed the extension of a second block of PMMA. X‐ray photoelectron spectroscopy study showed that the chemical compositions at the surfaces agreed well with their theoretical values. A novel surface‐attachable difunctional initiator was also synthesized and applied to the grafting of PTFEMA. The grafting density was doubled using this difunctional initiator, from 0.48 to 0.86 chains/nm2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1252–1262, 2006  相似文献   

13.
Particle monolayer formation at the air–water interface by polymer‐grafted colloidal silica was investigated. Methyl methacrylate (MMA) was polymerized from initiative bromide groups at colloidal silica surface by atom transfer radical polymerization. We obtained polymer‐grafted silica particle (SiO2‐PMMA) with relative narrow polydispersity of PMMA. For the polymer‐grafted particle with high graft density, particle monolayer formation was confirmed by π‐A isotherm measurement and SEM observation. Interparticle distance was controllable by surface pressure. Furthermore, grafted polymer chains were suggested to be fairly extended at the air–water interface. However, for the polymer‐grafted particle with low graft density, monolayer structure on substrate showed aggregation and voids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2789–2797, 2006  相似文献   

14.
(?)‐(1S,2R)‐Norbornene‐2‐carboxylic acid alkyl esters (alkyl = Me, Bz, L ‐menthyl, or D ‐menthyl) were successfully prepared by the Diels–Alder reaction of cyclopentadiene with (R)‐(?)‐pantolactone‐O‐yl acrylate followed by epimerization and column chromatography. The enantiomeric excess was 99.9%. These monomers were polymerized by Pd(II)‐based catalysts, and high yields of the polymers were obtained. The methyl ester gave an optically active polymer of high optical rotation (monomer [α]D = ?24.7, polymer [α]D = ?98.5). This high rotation value of the polymer was attributed to the isotactic chain regulation of the polymer. This high rotation was not observed with methyl esters prepared by the transesterification of menthyl esters. The stereoregular polymer exhibited notable resonance peaks at 39 ppm in 13C NMR spectra. No crystallinity was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1263–1270, 2006  相似文献   

15.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   

16.
To develop the polymerization exploiting the interconversion of fluorinated carbon radical to hydrocarbon radical, the radical cyclopolymerization of perfluoroisopropenyl vinylacetate [CF2?C(CF3)OCOCH2CH?CH2] (FIA) was investigated to afford a polymer possessing mainly five‐membered ring structure with bimodal molecular weight distribution having 1 × 105 as the higher molecular weight. This may be the first example wherein the cyclopolymerization between usual allyl group and fluorinated vinyl group is performed. The degree of cyclization was between 70 and 80% determined by 19F NMR of as‐polymerized products. The polymer preparation from perfluoroisopropenyl group, which shows scarce homopolymerization reactivity was accomplished. The mechanism that the addition of hydrocarbon radical to perfluoroisopropenyl group to produce fluorinated carbon radical followed by the intramolecular addition reaction onto allyl group to form five‐membered ring is proposed. The hydrolysis of the FIA polymer afforded a polymer possessing hydrophobic fluoroalkyl group with hydrophilic hydroxyl and carboxylic acid groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3220–3232, 2006  相似文献   

17.
Well‐defined polymer‐nanoparticle hybrids were prepared by a newly reported method: atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) mediated by iron catalyst. The kinetics of the surface‐initiated AGET ATRP of methyl methacrylate from the silica nanoparticles, which was mediated by FeCl3/triphenylphosphine as a catalyst complex, ascorbic acid as a reducing agent, N,N‐dimethylformamide as the solvent in the presence of a “sacrificial” (free) initiator, was studied. Both the free and grafted polymers were grown in a control manner. The chemical composition of the nanocomposites was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermogravimetric analysis was used to estimate the content of the grafted organic compound, and transmission electron micrographs was used to observe the core‐shell structure of the hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2006–2015, 2010  相似文献   

18.
The copolymerization of propylene and disubstituted diallylsilanes [(CH2 ?CH? CH2? )2R2Si (R = CH3 or C6H5)] was investigated with isoselective and syndioselective zirconocene catalysts with methylaluminoxane as a cocatalyst. The syndioselective catalyst showed a higher reactivity for disubstituted diallylsilanes than the isoselective catalysts. Diallyldimethylsilane was incorporated into the polymer chain via cyclization insertion preferentially and formed 3,5‐disubstituted dimethylsilacyclohexane units in the polypropylene main chain. In the copolymerization with diallyldiphenylsilane, diallyldiphenylsilane was copolymerized via both cyclization insertion and 1,2‐insertion, which formed a pendant allyl group. The structures of isolated silacyclohexane units, determined by 13C NMR and distortionless enhancement by polarization transfer spectroscopy, proved that the 1,2‐insertion of diallylsilanes proceeded with enantiomorphic site control; however, the diastereoselectivity of the cyclization reaction was independent of the stereoselectivity of the catalysts used, and cis‐silacyclohexane units were mainly formed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6083–6093, 2006  相似文献   

19.
Reversible addition–fragmentation chain transfer (RAFT) polymerizations of styrene under microwave irradiation (MI), with or without azobisisobutyronitrile, were successfully carried out in bulk at 72 and 98 °C, respectively. The results showed that the polymerizations had living/controlled features, and there was a significant enhancement of the polymerization rates under MI in comparison with conventional heating (CH) under the same conditions. The polymer structures were characterized with 1H and 13C NMR. The results showed the same structure for both polymers obtained by MI and CH. Successful chain‐extension experimentation further demonstrated the livingness of the RAFT polymerization carried out under MI. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6810‐6816, 2006  相似文献   

20.
The grafting of poly(VDF‐co‐HFP) copolymers with different amines containing aromatic rings, such as aniline, benzylamine, and phenylpropylamine, is presented. 19F NMR characterization enabled us to show that the sites of grafting of aromatic‐containing amines were first difluoromethylene of vinylidene fluoride (VDF) in the hexafluoropropene (HFP)/VDF/HFP triad and then that of VDF adjacent to HFP. The kinetics of grafting of benzylamine, monitored by 1H NMR spectroscopy, confirmed those sites of grafting and showed that all VDF units located between two HFPs were grafted in the first 150 min, whereas those adjacent to one HFP unit were grafted in the remaining 3000 min. Parameters such as the temperature or the molar percentage of HFP in the copolymer had an influence on the maximum rate of grafted benzylamine. The higher the temperature, the higher the molar percentage of grafted benzylamine. Furthermore, the higher the molar percentage of HFP in the copolymer, the higher the molar percentage of VDF in the HFP/VDF/HFP triad, and the higher the molar percentage of grafted benzylamine. The spacer length between the aromatic ring and the amino group had an influence on the kinetics of grafting: aniline (pKa = 4.5) could not add onto the polymeric backbone, whereas phenylpropylamine was grafted in the first 150 min, and benzylamine required 3000 min to reach the maximum amount of grafting. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1855–1868, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号