首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LHC(large hadron collider)是目前世界上能量最高的强子对撞机.CMS(compact muon solenoid,中文译名是紧凑型缪子螺线管探测器)是LHC上的主要实验计划之一,其目标就是要寻找Higgs粒子或者超出标准模型的其他新粒子,探清自然界的电弱破缺机制,以及寻找暗物质.CMS实验位于高能量和高亮度的最前沿,是21世纪初人类认识微观世界最重要的物理实验之一.中国参加了这项国际合作,制作了部分μ子探测器、磁铁支架、电子学和地板等,目前转入物理研究工作,争取在物理研究中作出有显示度的贡献.文章简要介绍了CMS探测器以及CMS实验的目标和意义.  相似文献   

2.
正2009年,经过近二十年的设计、施工和安装调试,位于欧洲核子中心(CERN)的大型强子对撞机(Large Hadron Collider,LHC)终于正式对撞成功,运行于其上的紧凑型缪子螺线管(Compact Muon Solenoid,CMS)~(1)探测器也开始运行取数。三年后,CMS实验与ATLAS实验共同宣布,在质量125 Ge V发现了希格斯玻色子~(2)。这是举世瞩目的高光时刻,意味着粒子物理标准模型预言的基本粒子全部被发现,人类对粒子物理的探索进入了新的领域。  相似文献   

3.
2012年7月4日,欧洲核子研究中心(CERN)的大型强子对撞机(LHC)上进行的两个实验—ATLAS实验和CMS实验,发现了一个质量大约为125 GeV的新粒子。这个粒子后来进一步被证实,其与粒子物理标准模型预言的希格斯粒子的属性相吻合。文章首先简单介绍了希格斯粒子及其发现历程,以及LHC上进行的CMS实验,然后主要介绍了CMS上希格斯粒子的发现和它的性质的测量结果,以及中国科学家们在其中做出的重要贡献。  相似文献   

4.
正运行于欧洲核子研究中心(CERN)的大型强子对撞机(LHC)是当今世界上最大的粒子物理实验设施。自2009年正式运行取数以来,已为粒子物理研究积累了海量实验数据,并于2012年发现了希格斯粒子(Higgs),成功证明了希格斯机制赋予基本粒子质量的正确性。中国合作组参与了LHC上所有的大型实验,并承担了众多粒子探测器的建造与升级工作,其中就包括阻性板室气体探测器(Resistive Plate Chamber,下文简称RPC)。  相似文献   

5.
<正>希格斯粒子被发现之后,粒子物理进入了一个新的阶段。希格斯粒子是粒子物理标准模型的最后一个组成部分,它的发现意味着一个时代的结束,也预示着一个新时代的开启。标准模型是系统地描述整个粒子物理、经过大量实验检验的理论体系。建立标准模型的相关工作已获得了18次诺贝尔奖。找到希格斯粒子之后,标准模型趋近完善,具有优美的结构和惊人的预言能力;另一方面,却存在暗物质、  相似文献   

6.
激光烧蚀等离子体(LAP)可用作粒子加速器和离子注入器中使用的离子源。相较于其它离子源,激光离子源在流强上具有优势,但由于产生的离子束脉冲时间短,限制了其在加速器中的广泛应用。实验中通过对激光等离子体扩散区域引入螺线管磁场进行约束,实现了对激光等离子体脉冲时间结构的调制。为了研究螺线管磁场对LAP的影响,实验使用了不同的激光能量(1~8 J)来生产具有不同初始条件的激光等离子体,并应用了不同的磁场强度来约束激光等离子体。在螺线管边缘场,通过可移动的法拉第筒(FC)对激光等离子体的横向分布进行测量。对于不同初始状态的等离子体,随着磁场的增加,其离子脉冲的主要参数(脉冲总电荷量、峰值流强、脉宽)均呈现先上升后逐渐饱和的变化趋势。另外,在没有磁场的条件下,在所测量位置处,等离子体的横向呈均匀分布;而在磁场约束的条件下,等离子体明显向轴线聚集。以上实验结果对进一步了解磁约束激光等离子体的特性具有重要意义。  相似文献   

7.
肖建新 《物理实验》1989,9(4):162-163
单层螺线管分布电容较小,常用于频率较高的电路中,多层螺线管与同体积的单层螺线管相比,容易获得较强的磁场,常用于低频或直流电路中.在物理实验中,后者比前者更为常用,因此,有必要对多层螺线管进行分析,并对两种螺线管进行比较. 一般多层密绕螺线管的轴向剖面如图所示,斜线区表示绕组.其内半径为R_1,外半径为R_2,长度为L,总匝数为N.下面  相似文献   

8.
经过近半个世纪的寻找,2012年,物理学家在欧洲核子中心的大型强子对撞机(LHC)上发现了希格斯玻色子(Higgs Boson),补全了粒子物理标准模型粒子谱的最后一块拼图(图1)。粒子物理标准模型是人类迄今为止构建的最为成功的物理模型之一。  相似文献   

9.
基于核四极矩共振(Nuclear Quadrupole Resonance, NQR)炸药探测原理,对探测系统中拾取信号的关键部件射频线圈进行了优化设计,并确定了小型螺线管型线圈的直径、长度和匝数. 试验测试表明,此线圈射频场均匀性好、信噪比大、灵敏度高,可以快速准确探测到NQR信号,验证了线圈设计理论的有效性和制作方法的可行性. 该设计方法对提高隐藏炸药探测的准确率以及不同试验条件下射频线圈的设计具有重要意义.  相似文献   

10.
《物理》2014,(7)
彼得·希格斯(Peter Higgs)是英国著名的理论物理学家,因是希格斯机制的主要贡献人之一及以其名字命名的希格斯粒子而闻名于世。彼得·希格斯与弗朗索瓦·恩格勒(Francois Englert)共同获得了2013年诺贝尔物理学奖。文章简要介绍了彼得·希格斯的生平,希格斯机制的提出以及希格斯粒子命名的由来。此外,文章还简要回顾了希格斯粒子的发现过程。  相似文献   

11.
实验证明通电螺线管的周围和内部均有磁场,通电螺线管的磁场方向跟电流方向之间的关系可用右手螺旋定则来判定.通电螺线管的磁场强弱跟所通电流的大小有关.这些实验事实都不难理解,学生感觉困惑的是:“置于通电螺线管内部的小磁针N极跟置于通电螺线管外部的小磁针N级指向不同”这一实验事实(如图1所示).  相似文献   

12.
基于霍尔效应测量通电螺线管内部磁场的实验数据,提出了评估霍尔元件副效应的方法,包括霍尔元件的不等势电压降以及能斯托效应和里纪-勒杜克效应引起的附加电势,并详细讨论了它们对结果的影响.进一步,借助Origin软件,利用通电螺线管磁场分布的理论公式拟合相应的实验数据,非常准确地估测了螺线管的基本参数,包括螺线管总匝数、长度及平均半径等.  相似文献   

13.
刘国良 《物理通报》2016,35(5):9-15
无限长密绕载流螺线管是磁场教学中的一个重点和难点. 通过几种不同方法的教学设计, 对无限长密 绕载流螺线管磁场分布进行具体分析, 达到启迪学生思维, 领悟物理思维方式精髓的目的  相似文献   

14.
在电磁学中,无限长直载流螺线管的磁场是一个基本与核心的问题,为了得到这一系统的磁场,通常的做法是:先就圆截面情况计算,然后把截面为任意形状无限长直螺线管看成是由无数大大小小的圆截面螺线管叠加而成,由此得到螺线管内的磁场均匀而管外磁场为零的一般结论.这里给出了一种推导截面为任意形状无限长直螺线管内外磁场的直接方法.先计算螺线管表面一窄条的磁场,再算总磁场.这种方法物理图像清楚,数学过程简单,可以在教学中加以应用.  相似文献   

15.
轩植华 《物理实验》2000,20(5):30-31
通过螺线管磁场制物理摆的作用,模拟重力场变化对物理摆运动的影响。  相似文献   

16.
周欣仪 《物理通报》2016,35(11):82-86
一般认为, 在忽略边缘效应时, 通电螺线管内部是个匀强磁场. 然而, 教材中所呈现出来的通电螺线管 内部磁场分布图像却未能予以充分证实. 本实验换用自行绕制的内径较小、 长度较长的线圈进行实验, 得到的实验 图像较为准确地证实了这一结论. 并基于真实的实验操作过程, 改进了实验装置, 以便更加便捷高效地得到实验数 据和图像  相似文献   

17.
疏松载流螺线管轴线上磁场实验的设计可以测量螺线管轴线不同位置上的轴向磁场和径向磁场,实验结果与数值计算结果吻合。另外,从该实验测量结果发现疏松型螺线管轴线上的轴向磁场与螺距呈近似线性关系。这些工作不仅可作为大学物理实验课的选做内容,还可以为设计基于测量磁场的位移和应力传感器提供依据。  相似文献   

18.
《大学物理》2021,40(6)
采用毕奥-萨伐尔定律,应用矢量叠加原理,具体讨论了长度为L=200 mm的螺线管的磁场分布.首先推导了单个圆形载流线圈的磁场在空间分布的积分公式,然后,利用Python软件求解绘制出了磁感应线,与经典物理教材进行了对比,验证了理论公式和数值计算的正确性.基于单个圆形载流线圈的结果,得到了有限长载流螺线管磁场全空间分布的理论公式,绘制了相应的磁感应线分布图,详细讨论了线圈匝数密度、螺线管长度对磁场空间分布均匀性的影响.发现匝数密度大于1000 m~(-1)时,螺线管在-74 mm≤z≤74 mm范围内的磁场可视为均匀磁场.本文的结果为大学物理和大学物理实验教学提供了可靠、直观清晰的素材.  相似文献   

19.
李金 《物理》2011,40(3)
暗物质研究是21世纪粒子物理、天体物理和宇宙学最重要的前沿科学课题之一.暗物质被天文学中的引力效应所观察到,但对它的存在和认识仍旧是个谜.文章主要论述了对弱作用大质量暗物质粒子(WIMP)直接探测的基本原理、各种直接探测技术、当前的实验进展和发展方向.最后给出了最近的实验物理结果.  相似文献   

20.
2012年7月4日欧洲核子研究中心(CERN)宣布在大型强子对撞机LHC上发现希格斯粒子,科学家经过50多年的搜索,粒子物理学终于进入了希格斯时代。由于希格斯能量为较低的125 Ge V,因此,除了可以使用直线正负电子对撞机(例如ILC和CLIC)外,还可以采用环形电子正负对撞机产生希格斯粒子,并且后者具有更高的亮度及更多的对撞点,除了在功耗方面外。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号