首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internal balance technique is effective for the model reduction in flexible structures, especially the ones with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research on this topic has been mostly theoretical so far, and little has been done in experiments or engineering applications. This paper studies the internal balance method theoretically as well as experimentally and designs an active controller based on the reduction model. The research works on a digital signal processor (DSP) TMS320F2812-based experiment system with a flexible beam and proposes an approximate approach to access the internal balance modal coordinates. The simulation and test results have shown that the proposed approach is feasible and effective, and the designed controller is successful in restraining the beam vibration.  相似文献   

2.
The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research so far on this topic has been mostly theoretic and little on experiment or engineering applications. This paper, by working on a DSP TMS320F2812-based experiment system with a flexible plate and bringing forward an approximating approach to accessing the ...  相似文献   

3.
中心刚体-柔性梁系统的最优跟踪控制   总被引:3,自引:0,他引:3  
蔡国平  李琳  洪嘉振 《力学学报》2006,38(1):97-105
对考虑阻尼影响的中心刚体-柔性梁系统的动力特性和主动控制进行研究. 研究 中考虑了3种动力学模型:一次近似耦合模型、一次近似简化模型和线性化模型. 一次近 似模型中同时考虑了柔性梁的轴向变形和横向变形. 若在一次近似耦合模型中忽略轴向变 形的影响,则可得出一次近似简化模型. 线性化模型是对一次近似简化模型的线性化处理. 另外研究中考虑了3种阻尼因素:结构阻尼、风阻、中心刚体轴承处的阻尼. 控制设计采 用最优跟踪控制方法. 给出了从物理测量中提取模态坐标的滤波器方法. 研究结果显 示,一次近似简化模型能够有效地对系统的动力学行为进行描述;阻尼对系统的动力学特 性有着重要影响;当系统大范围运动为低速时,模态滤波器能够较好地提取出控制律所需 的模态坐标,最优跟踪控制方法能够使得系统跟踪所期望的运动轨迹,并且柔性梁的弹性 振动可得到抑制.  相似文献   

4.
Attitude tracking control of flexible spacecraft with large amplitude slosh   总被引:1,自引:0,他引:1  
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli–Euler beam, and the assumed modal method is employed.A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics,liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.  相似文献   

5.
For lightweight and flexible structures, it is important to suppress the vibrations induced by interactions between fluid and structures. This paper presents the robust control of the vortex-induced vibration of a rigid circular cylinder supported by an elastic cantilever beam in which the fluid force is considered as an external excitation on the structure. For the problems considered here, the excitation frequency is assumed to be equal to the natural frequency of the structure or the “lock-in” frequency. The natural frequencies of this analytical model are calculated by using the modal analysis method and then modal coordinates are introduced to obtain the state equations of the structural system. A pair of piezoelectric devices fixed under the base plate, on which the elastic beam is clamped, were used as actuators. A robust controller satisfying the nominal performance and robust performance is designed using μ -synthesis theory based on the structured singular value. Simulation and experiment were carried out with the designed controller and the effectiveness of the robust control strategy was verified by both experimental and simulation results.  相似文献   

6.
陈光  王永 《实验力学》2008,23(2):141-148
密集模态挠性结构的模态不仅阻尼小而且耦合程度高,给模型辨识带来了很大困难.频域辨识是获取空间挠性结构模型的一个有效方法,但是目前频域辨识要么模型结构定义有缺陷,要么是集中在单变量情形,不适合作大型空间挠性结构多变量模型的辨识.本文提出了多变量极大似然频域辨识,给出了其模型结构定义、算法推导及实现,并将其应用于H型密集模态挠性板的模型辨识,根据辨识结果,设计主动控制律,实现了对密集模态挠性板振动的有效抑制,表明了辨识算法及主动控制的可行性.  相似文献   

7.
采用最优跟踪控制方法对柔性机械臂线性化主动控制中的时滞问题进行研究。首先采用一种积分变换,将包含时滞项的动力学方程转换成形式上不包含时滞项的标准形式,然后根据最优跟踪控制理论设计控制律。在每一步控制律的计算中,不但包含有当前步的状态反馈,而且包含有前若干步控制的线性组合。文中还给出了一个模态坐标的提取方法。仿真结果显示,若对时滞不处理,控制系统会在很小时滞量时出现发散;当控制系统中的时滞量不大时,本文的线性化时滞控制设计能够取得较好的控制效果;当系统存在较大时滞量时,线性化时滞控制设计的有效范围是有限的。  相似文献   

8.
结构基于独立模态空间控制的神经网络控制   总被引:3,自引:1,他引:3  
在对柔性结构振动的主动控制中,独立模态空间控制是一种适合于柔性结构振动控制的方法,但如果控制器选择不好就会带来观测溢出和控制溢出.神经网络控制则具有较好的泛化作用和鲁棒性,对抑制观测溢出和控制溢出具有较好的效果.本在独立模态空间控制的基础上设计了一种神经网络控制,并对柔性梁及板进行了控制的数值仿真,取得了较好的效果.  相似文献   

9.
柔性多体系统动力学实验研究综述   总被引:4,自引:0,他引:4  
杨辉  洪嘉振  余征跃 《力学进展》2004,34(2):171-181
介绍了国内外柔性多体系统动力学实验研究现状,分为三个方面,即理论模型验证实验、动力学特性的实验研究和其它实验.柔性多体系统动力学建模理论的发展经历了3个阶段:运动-弹性动力学(KED)方法、传统混合坐标方法和计及了动力刚化效应的各种非线性理论.关于这些理论的模型验证实验均在本文中作了重点介绍.文中还对柔性多体系统动力学性态的研究实验也作了介绍,包括系统模态特性和共振等非线性力学行为.关于机械臂控制和碰撞研究实验虽有提及,但不作为重点.随后,着重介绍了柔性体弹性振动位移的测量和阻尼因素的处理这两个在实验不可避免但又难以解决的问题,尤其是结构阻尼和大范围运动引起的空气阻力.最后指出了今后的研究方向.文中对一些较为重要的实验装置也着重予以介绍,并给出了部分实验图片及数据曲线,以给读者一个更好的理解和参考.   相似文献   

10.
The efficiency and accuracy are two most concerned issues in the modeling and simulation of multi-body systems involving contact and impact. This paper proposed a formulation based on the component mode synthesis method for planar contact problems of flexible multi-body systems. A flexible body is divided into two parts: a contact zone and an un-contact zone. For the un-contact zone, by using the fixed-interface substructure method as reference, a few low-order modal coordinates are used to replace the nodal coordinates of the nodes, and meanwhile, the nodal coordinates of the local impact region are kept unchanged, therefore the total degrees of freedom (DOFs) are greatly cut down and the computational cost of the simulation is significantly reduced. By using additional constraint method, the impact constraint equations and kinematic constraint equations are derived, and the Lagrange equations of the first kind of flexible multi-body system are obtained. The impact of an elastic beam with a fixed half disk is simulated to verify the efficiency and accuracy of this method.  相似文献   

11.
In this paper, the potential to utilise modal coupling effects in the formulation of a generalised vibration suppression algorithm is investigated. The plant, a flexible cantilever beam undergoing first mode oscillation, is modelled by a second order differential equation with a spring constant and damping coefficient that are representative of the first mode flexibility and material damping of the beam, respectively.In order to establish an internal resonance condition, a second equation, designated the supplementary equation or controller, is appended to the plant to render a two-degree-of-freedom system. The objective is to generate an internally resonant pair. Upon successful completion of this task, a suppression technique is implemented whereby energy is removed from the plant via the supplementary system.The introduction of the supplementary system results in a set of design parameters which are employed to realise a state of internal resonance and to establish the desired dynamic response. The choice of 2:1 internal resonance models results in a unidirectional control torque making this technique particularly attractive for systems using thrusters or tendons as actuators. A similar structural configuration regulated under a PD (Proportional-Derivative) control law is compared to the proposed control scheme via simulation.  相似文献   

12.
A new model for a smart beam with a partially debonded active constrained layer damping (ACLD) patch is presented, and the effects of the debonding of the ACLD patch on both passive and hybrid control are investigated. In this model, both shear and compressional vibrations of the viscoelastic material (VEM) layer are considered. The moment inertia and the transverse shear effect are also taken into account based on the Timoshenko’s beam theory. The adhesive layer between the host beam and the piezoelectric sensor patch is modeled as an elastic load transferring media. The debonding of the ACLD patch is approximated by removing the VEM between the constraining layer and the host beam in the debonding region, and the continuity conditions are imposed based on displacement continuity and force balance. A modal velocity observer-based modal control scheme is also given to perform the active modal control of the beam. In order to examine the effects of part debonding of the ACLD patch, the characteristic equation of the beam treated with an ACLD patch is derived. The simulation example results show that an edge debonding of the ACLD patch can significantly affect both passive and hybrid control. It is also found that the additional mode induced by the debonding has unique effects on the modal damping ratios and frequencies of both open-loop and closed-loop system.  相似文献   

13.
The objective of this paper is an analytical and numerical study of the dynamics and dynamic instability of a slider-crank mechanism with an inextensible elastic coupler. Special attention is given to the phenomena arising due to modal interactions produced by the existence of multi-component, specifically two-component, parametric resonance. Such modal couplings are very common in the bending-bending motions of fixed/ rotating beams. The two-component parametric resonance occurs when one of the natural frequencies of flexible parts of the mechanism is one-half or twice of the excitation frequency and simultaneously the sums or the differences among the internal frequencies are the same, or neighboring, as the frequency of excitation. The effects of two-component parametric resonance post on instability condition are also investigated. Resonance generated by more than two component modes are neglected due to its remote probability of occurrence in nature. The mechanics of the problem is Newtonian. Methods of analysis will consist of the dynamics of small deformations superimposed on the undeformed state. Without loss of generality and based on the Euler–Bernoulli beam theory, the coupled nonlinear equations of motion of a slider-crank mechanism with an inextensible flexible linkage are derived. The Newtons second law is used to obtain the boundary constraints at the piston end. Galerkins procedure was used to remove the dependence of spatial coordinates in the partial differential equations. The method of multiple time scales is applied to consider the steady state solutions and the occurrence of dynamic instability of the resulting multidegree-of-freedom dynamical system with time-periodic coefficients.  相似文献   

14.
对移动结构作用下梁的响应问题进行了推广,采用柔性梁作为移动结构模型,在考虑结构柔性和悬挂连接的前提下对系统的耦合振动进行了分析.根据一般边界条件梁建立振动方程,通过量纲一参数以及模态叠加法处理系统动力学方程.以简支边界条件为例,得到了梁响应的数值结果,对系统主要参数即移动结构频率、移动速度及连接刚度对简支梁振动的影响进行了讨论.结果表明:考虑移动体的柔性频率对简支梁的振动会产生一定的影响.  相似文献   

15.
耦合变形对大范围运动柔性梁动力学建模的影响   总被引:1,自引:0,他引:1  
柔性梁在作大范围空间运动时,产生弯曲和扭转变形,这些变形的相互耦合形成了梁在纵向以及横向位移的二次耦合变量。本文考虑了变形产生的几何非线性效应对运动柔性梁的影响,在其三个方向的变形中均考虑了二次耦合变量,利用弹性旋转矩阵建立了准确的几何非线性变形方程,通过Lagrange方程导出系统的动力学方程。仿真结果表明,在大范围运动情况下,仅在纵向变形中计及了变形二次耦合量的一次动力学模型,与考虑了完全几何非线性变形的模型具有一定的差异。  相似文献   

16.
Summary In this article, a comparative study of the control for the repetitive impacting elastic link with parametrically excited base in rotational motion is considered. First, a sliding mode control strategy based on linearized inverse model is designed and employed to suppress the vibrations of the elastic beam after the impact. The control concept involves the usage of an adaptive plant inverse model as controller in feedforward configurations. Next, a linear controller is designed via Lyapunov-Floquet transformation. In this approach, the time-periodic equations of motion are transformed into a time-invariant form, which is suitable for the application of standard time-invariant controller-design techniques. Finally, a fuzzy logic controller is applied for the nonlinear model of the impacting system. The momentum balance method and an empirical coefficient of restitution is used in the collision. Received 27 January 1999; accepted for publication 3 June 1999  相似文献   

17.
18.
对桁架结构系统的模型降阶和主动控制进行了研究。系统模型采用有限元方法进行建模;模型降阶分别采用模态价值分析方法和内平衡降阶方法;控制设计采用最优控制方法。同时详细给出了模态价值分析方法和内平衡降阶方法的降阶过程,并将两者的结果进行了数值对比。仿真结果显示,两种降阶方法均能够有效地对桁架系统进行模型降阶,本文采用的最优控制律能够有效地抑制结构的振动。  相似文献   

19.
多储液腔航天器刚液耦合动力学与复合控制   总被引:1,自引:0,他引:1  
采用复合控制方法对充液航天器的姿态和轨道机动进行高精度控制.通过傅里叶-贝塞尔级数展开法,将低重力环境下液体的弯曲自由表面的动态边界条件转化为简单的微分方程,其中耦合液体晃动方程的状态向量由相对势函数的模态坐标和波高的模态坐标组成.通过广义准坐标下的拉格朗日方程得到航天器刚体部分运动和液体燃料晃动的耦合动力学方程,提出了自适应快速终端滑模策略和输入整形技术相结合的复合控制器,并分别用于控制携带有一个燃料腔和四个燃料腔航天器的轨道机动和姿态机动.通过数值模拟来验证控制器的效率和精度.结果表明,对于多储液腔航天器,如果在设计航天器的姿态和轨道控制器时没有充分考虑燃料晃动效应,那么在受控航天器系统中将会出现刚-液-控耦合问题并导致航天器姿态不稳定.而本研究中的复合自适应终端滑模控制器可以实现航天器机动的高精度控制并有效抑制液体燃料晃动.  相似文献   

20.
Wave-based control (WBC) is a simple and relatively new technique for motion control of under-actuated flexible systems. To date it has been mainly applied to rectilinear lumped flexible systems. The current work focuses on a development of WBC to control two-dimensional beam-like structures in which an actuator, attached to one end, acts to translate and rotate the structure through an arbitrary path in the plane. In this work, first a lumped model of a beam is developed using mass–spring arrays. The lumped beam model is of interest here as a benchmark control challenge. It can also be considered as a model of various lumped or distributed mass structures. To check the latter, the mode shapes and frequencies are first compared with those of classical beam theory. This involved a new technique to find mode shapes and frequencies for arrays. The control strategy is then presented and tested for a range of manoeuvres. As a system to be controlled, the mass–spring array presents many challenges. It has many degrees of freedom, many undamped vibration modes, is highly under-actuated, and sensing of system states is difficult. Despite these challenges, WBC performs well, combining a fairly rapid response with active vibration damping and zero steady-state error. The controller is simple to implement and of low order. It does not need or use any system model and is very robust to system changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号