首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Liquid crystals》1997,23(5):749-758
Morphological, electro-optical and switching properties of polyester resin/nematic liquid crystal composite films have been studied for varying composition (10-40 wt% of LC), temperature (20-50 C), film thickness (10-75 mum) and UV curing time of the matrix (0.25-12 min). The PDLC films were formed by LC separation in a UV polymerization process of the thin layer of oligoester resin (liquid crystal mixture) between ITO coated glass plates. The electro-optical and response behaviour based on the electric field controlled light scattering of the composite films was observed. The results were interpreted in terms of effective anchoring strength at the interface of the polymer and liquid crystal depending either on the area fraction of the interface in the composite film (dependent on the size and shape of the liquid crystal droplets) or the stiffness and resistivity of the polyester resin changing in the course of the crosslinking polymerization.  相似文献   

2.
Polymer-dispersed liquid crystal (PDLC) films were prepared from thermal polymerisation-induced phase separation in heat-curable monomers/nematic liquid crystal (LC) mixtures. For PDLCs with a certain amount of LCs, the microstructure and the refractive index of polymer networks could be influenced by the relative content of epoxy monomers, owing to their different chemical structures. The effect of these factors on the electro-optic properties of films was also investigated.  相似文献   

3.
Polymer dispersed liquid crystal (PDLC) films were prepared by photopolymerization of liquid crystal (LC)/polymerizable monomers/photoinitiator composites. The effects of the structures of the polymerizable monomers on the electro‐optical properties of PDLC films were investigated. It was found that the length of the molecular chain and the rigidity and flexibility of molecules influenced the structure of the polymer network in the PDLC films somewhat, and then affected the electro‐optical properties of the composites accordingly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1369–1375, 2008  相似文献   

4.
New highly birefringent reactive liquid crystal materials based on the 2-methylhydroquinone core were designed and synthesised. Rod-type liquid crystal compounds bearing photo-crosslinkable reactive group of acryloyl, methacryloyl, cinnamoyl, furylacryloyl group were synthesised by introducing acetylene groups via Sonogashira coupling to obtain high birefringence, and lateral groups such as fluoro and methyl to adjust the temperature of the liquid crystal phase. The synthesised compounds were characterised using nuclear magnetic resonance spectroscopy, mass spectrometry and elemental analysis. In addition, their thermal behaviour was investigated using differential scanning calorimetry and polarised optical microscopy. After aligning the synthesised compounds, liquid crystal films were prepared by photo-irradiation. Photo-elastic modulator results showed that the obtained liquid crystal films had high birefringence (Δn) values of 0.32–0.40.  相似文献   

5.
聚合物分散液晶膜   总被引:1,自引:0,他引:1  
聚合物分散液晶膜是将液晶和聚合物结合,得到的一种综合性能优异的膜材料,液晶分子赋予了聚合物分散液晶膜显著的电光特性,使其受到了广泛的研究,并有着广阔的应用前景。而聚合物作为成膜材料,起着辅助但是重要的作用,其结构和固化过程是影响聚合物分散液晶膜电光特性的重要因素。本文简要综述了聚合物分散液晶膜的制备方法、电光特性的影响因素及研究手段。  相似文献   

6.
以可逆加成-断裂链转移(RAFT)、引发转移终止(iniferter)活性自由基聚合相结合的方法,用一步法制备了不同分子量的大分子引发剂RAFT-PS-co-PCMSI(MI),并通过紫外光聚合诱导相分离法制备了以接枝聚合物为基体的聚合物分散液晶(PDLC)膜.研究了不同分子量的MI对PDLC的微观形貌,关闭状态透光率,阈值电压,饱和电压以及记忆效应等方面的影响.研究表明,降低PDLC中MI的分子量,会使得液晶微滴粒径增大,阈值电压(Vth)、饱和电压(Vsat)减小,记忆效应、关闭状态透光率升高.  相似文献   

7.
Electro-optically active polymer–liquid crystal composites based on ferroelectric liquid crystals and stretched porous polyethylene films were developed. The alignment of ferroelectric liquid crystals incorporated into the porous polyethylene films with average porous diameter of around 200 nm was observed and studied. It was shown experimentally that these samples containing ferroelectric liquid crystals are flexible electro-optical films exhibiting a saturation electric field near 2·10Vm?1 and a response time of about 30 μs under the action of the saturation field. A simple theoretical model of ferroelectric liquid crystal molecules' complete reorientation in electric fields inside pores of the films has been proposed and confirmed experimentally.  相似文献   

8.
The different fluorinated liquid crystal (LC) molecules doped to E8 were used as LC component to prepare polymer dispersed liquid crystal (PDLC) films. The mass fraction of the LC mixture is fixed 50.0 wt%. Results indicate that doping 8.0 wt% fluorinated LC molecule ME3CP to E8 significantly reduced the driving voltage of the PDLC films, and the driving voltage reduced with the rise of mass fraction of ME3CP. Besides, the terminal flexible chain length of the fluorinated LC molecule influenced the LC mixture properties based on E8, such as the dielectric anisotropy, birefringence and viscosity of the LC mixture, and the morphology and the electro-optical properties of PDLC films were controlled not only by the physical properties of the LC mixture, but also by the terminal flexible chain length of the fluorinated LC molecule .  相似文献   

9.
主链含氟聚酰亚胺液晶取向排列剂的表面性能及微观形貌   总被引:1,自引:0,他引:1  
主链含氟聚酰亚胺液晶取向排列剂的表面性能及微观形貌  相似文献   

10.
Polymer films containing dispersions of liquid crystal microdroplets have considerable potential for use in displays and other light control devices. These polymer-dispersed liquid crystal (PDLC) films operate by electric field control of light scattering, rather than by polarization control as in the case of twisted nematic systems. The scattering characteristics of the PDLC films are determined by the refractive indices of the polymer and liquid crystal and by the size of the microdroplets. We have found that it is possible to regulate the microdroplet size by controlling the droplet formation rate (i.e. the cure kinetics of the film). Using calorimetry and scanning electron microscopy, we determined the influence of cure kinetics on microdroplet size for epoxy-based PDLCs. We found that droplet size increased with increasing cure time constant. However, the relationship changed as cure temperature was varied, perhaps as a result of competing cure processes. We also determined the phase behaviour of the epoxy-based PDLCs. The liquid crystal acted as a plasticizer, depressing the glass transition temperature of the PDLC samples slightly below that of the pure epoxy. The temperature and enthalpy of the nematic to isotropic transition of the liquid crystal material in the microdroplets were both functions of cure temperature. From the transition enthalpy it was possible to estimate a, the fraction of liquid crystal contained in the droplets; we found that a decreased with increasing cure temperature, presumably as a result of greater liquid crystal solubility in the epoxy matrix at higher temperatures.  相似文献   

11.
ABSTRACT

In this paper, polymer dispersed liquid crystal (PDLC) films based on epoxy-mercaptan system were prepared by thermal-initiated polymerization. The effects of the liquid crystal (LC) content, the proportion and the functionality of epoxy monomers on the polymer structures and electro-optical properties of the as-made PDLC films were investigated systematically. It was found that the morphologies of the polymer matrix can be altered from polymer meshes to polymer balls by increasing the LC content as well as the functionality of epoxy monomers. Accordingly, the electro-optical properties could be regulated by the morphologies of polymer networks. Especially, the as-made PDLC films with homogeneous porous structures exhibited the optimal electro-optical properties. Consequently, this work offers a meaningful approach to control the microstructures and optimize the electro-optical properties of PDLC films, which indeed can form a wonderful footstone for the wide application of PDLC.  相似文献   

12.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light-scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process, using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of an eutectic nematie mixture E7 and a polyester acrylate-based polymer precursor. The optical and electro-optical properties of the PDLC films obtained depend strongly on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by means of calorimetrie measurements.  相似文献   

13.
Polymer dispersed liquid crystal (PDLC) films can be switched electrically from a light scattering off-state to a highly transparent on-state. Thin films were prepared via a polymerization-induced phase separation process using electron beam radiation. The liquid crystal (LC)/polymer materials were obtained from blends of a eutectic nematic mixture E7 and a polyester acrylate based polymer precursor. The optical and electrooptical properties of the obtained PDLC films strongly depend on the LC concentration. The LC solubility limit in the polymer matrix and the fractional amount of LC contained in the droplets were determined by calorimetric measurements.  相似文献   

14.
Polymer-dispersed liquid crystal (PDLC) films operating in reverse mode are transparent electro-optical devices, which can be turned into an opaque state by application of a suitable electric field. The effect was investigated of different UV powers, used during the polymerization process, on the electro-optical and morphology properties of PDLCs, working in reverse mode operation. Films were obtained by UV polymerization of mixtures of a low molecular weight nematic liquid crystal and a photopolymerizable liquid crystal monomer, homeotropically aligned by rough conductive surfaces. The electro-optical and morphology properties of samples were related to the polymerization conditions. Samples polymerized by lower UV powers exhibited “polymer ball” morphology and an electro-optical response due to the liquid crystal director reorientation, whereas samples obtained at higher UV powers showed a “Swiss cheese” morphology and an electro-optical response due to dynamic scattering. In addition, we observed by conductivity and IR measurements that UV exposure induces a degradation of the nematic liquid crystal.  相似文献   

15.
ABSTRACT

Polymer-dispersed liquid crystal (PDLC) films containing a series of monomers with different alkyl chain lengths were prepared by nucleophile-initiated thiol-ene click reaction. The effect of alkyl chain length of monomers, dye and temperature on electro-optical properties of PDLC films was investigated. It was found that the alkyl chain length and polymerisation rate of monomers together determine the size of liquid crystal (LC) droplets, thus affecting the electro-optical properties of PDLC. In addition, the type and content of dyes could be optimised to obtain PDLC materials with better comprehensive properties for display.  相似文献   

16.
Polymer dispersed liquid crystal (PDLC) films were prepared by a devised method, in which photo‐polymerization induced phase separation in a mixtures of a macro‐iniferter, methyl acrylater, and liquid crystal. The morphology of the obtained PDLC films was examined on a polarized optical microscopy, and the effect of molecular weight of MIs on the electro‐optical properties was deliberately investigated. Decreasing the molecular weight of MIs in the films led to formation of larger liquid crystal droplets and a lower Vth values. Vsat increased and the memory effect decreased because of the increased interface anchoring strength induced by the higher molecular weight of polymer matrices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1530–1534, 2009  相似文献   

17.
Summary: The time relaxation of the optical transmission of polymer-dispersed liquid crystal films was investigated after application of an electric rectangular pulse. These films, consisting of liquid crystalline microdomains dispersed in a polymer matrix, were obtained by polymerization induced phase separation using ultraviolet and electron beam curing techniques. The effects of the curing procedure and film thickness on the transmission properties were investigated. The electro-optical response was expressed via a hierarchy of order parameters. A good agreement between the experimental data and calculated transmission values was found.  相似文献   

18.
利用液晶取向变化的光学免疫检测方法   总被引:1,自引:1,他引:0  
利用共价固定方法将抗血清白蛋白固定到硅烷化玻璃基底上, 并通过摩擦其表面形成5CB液晶整齐均一取向排列的基底. 考察了不同浓度的人血清白蛋白与基底作用后液晶在基底上形成的偏光光学图像的差异, 并利用自行提出的“图像加权平均灰度值”定量分析了图像灰度与人血清白蛋白浓度的关系. 对比研究了基底上的特异性吸附与非特异性吸附引起的液晶偏光光学图像的差异以及调制偏振光能力, 结果表明, 该基底具有很高的特异性. 该方法可望发展成为一种灵敏、非标记的光学免疫检测方法.  相似文献   

19.
In this work we present a new technique for obtaining large diffraction gratings (some cm) by means of a simple filling of cells having a planar treatment of their inner surfaces. A homogeneous mixture, composed of a cholesteric liquid crystal and a nematic liquid crystal monomer, was used. During the filling process, the flow induces a phase separation between the cholesteric liquid crystal and the liquid crystal monomer and, at the same time, the latter is oriented planar to the surfaces of the cell. Phase separation produces alternate arrays constituted by the cholesteric liquid crystal and the nematic liquid crystal monomer. Successive UV polymerization of these films yields a permanent grating. We have investigated the transmitted and first order diffracted beam efficiency for films obtained at different temperatures. The morphology of the films was studied by using an optical microscope equipped with crossed polarizers and by electron microscopy in order to control the shape of the arrays and the alignment of the oriented polymer.  相似文献   

20.
The conductance of polymer matrix is an important factor for the property of the polymer dispersed liquid crystal (PDLC). The nanographites are dispersed into the polymer matrix for optimising the dielectric conductive property. The synthesised nanoparticles SiO2 was used as photonic crystal (PC) to work as a template for fabricating PDLC films. A mixture of pre-polymer and liquid crystals (LCs) was infiltrated into the void of the PC and polymerised under ultraviolet light. The void of the PC made uniform the dispersion of the liquid crystals in the films. The optical property of the PDLC films was optimised by doped nanographites and negative charge SiO2 template. The effect of negative charge SiO2 and nanographites on the threshold voltage and driving voltage was researched. The morphology of the PDLC films was studied by the FTIR image. The dispersed LCs droplets were uniformly affected by the addition of the nanographites. The LCs droplets dispersed in the polymer were located in the void of the SiO2 photonic crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号