首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The robustness of the Dirac‐like electronic states on the surfaces of topological insulators (TIs) during materials process‐ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi2Te2Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov–de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case – surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides – the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
《Physics letters. A》2020,384(30):126782
α-Sn is on the boundary of a couple of distinct topological phases. It will transform into a topological insulator under a suitable strain. However, a clear picture of its topological surface states (TSSs) is still lacking. Here we perform first-principles calculations on the electronic structure of α-Sn(111) surface to identify its TSSs and reveal their properties. The results show that the presence of valence band reorganizes the TSSs in the inverted sp gap into two Dirac cones. The lower one is in the valence band continuum; the upper one resides in the gap between the valence and conduction bands. We also demonstrate the transformation of the surface states by switching on or off of strain and/or spin-orbit coupling. Without spin-orbit coupling, only the TSSs associated with the lower Dirac cone survive, and they are spin unpolarized. The results are useful for understanding and engineering the topological properties of α-Sn.  相似文献   

3.
何敬  寇谡鹏 《中国物理 B》2016,25(11):117310-117310
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states.In this paper,we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters.We find that both topological defects(quantized vortices) and non topological defects(vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects.These topological mid-gap states have nontrivial topological properties,including the nonzero Chern number and the gapless edge states.Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters.  相似文献   

4.
Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment.  相似文献   

5.
Three-dimensional (3D) topological insulators represent a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. The unusual surface states of topological insulators rise from the nontrivial topology of their electronic structures as a result of strong spin-orbital coupling. In this review, we will briefly introduce the concept of topological insulators and the experimental method that can directly probe their unique electronic structure: angle resolved photoemission spectroscopy (ARPES). A few examples are then presented to demonstrate the unique band structures of different families of topological insulators and the unusual properties of the topological surface states. Finally, we will briefly discuss the future development of topological quantum materials.  相似文献   

6.
Depositing particles randomly on a 1D lattice is expected to result in an equal number of particle pairs separated by even or odd lattice units. Unexpectedly, the even-odd symmetry is broken in the self-selection of distances between indium magic-number clusters on a Si(100)-2×1 reconstructed surface. Cluster pairs separated by even units are less abundant because they are linked by silicon atomic chains carrying topological solitons, which induce local strain and create localized electronic states with higher energy. Our findings reveal a unique particle-particle interaction mediated by the presence or absence of topological solitons on alternate lattices.  相似文献   

7.
王建峰  王娜  黄华卿  段文晖 《中国物理 B》2016,25(11):117313-117313
The rise of topological insulators in recent years has broken new ground both in the conceptual cognition of condensed matter physics and the promising revolution of the electronic devices.It also stimulates the explorations of more topological states of matter.Topological crystalline insulator is a new topological phase,which combines the electronic topology and crystal symmetry together.In this article,we review the recent progress in the studies of SnTe-class topological crystalline insulator materials.Starting from the topological identifications in the aspects of the bulk topology,surface states calculations,and experimental observations,we present the electronic properties of topological crystalline insulators under various perturbations,including native defect,chemical doping,strain,and thickness-dependent confinement effects,and then discuss their unique quantum transport properties,such as valley-selective filtering and helicity-resolved functionalities for Dirac fermions.The rich properties and high tunability make SnTe-class materials promising candidates for novel quantum devices.  相似文献   

8.
《Physics letters. A》2020,384(17):126375
Based on the first-principle calculations and k⋅p effective model analysis, we predicted a new topological semimetal (TSM) MgBi2O6. Without spin-orbit-coupling (SOC) and under the generalized-gradient-approximation (GGA), MgBi2O6 is a nodal-line semimetal. When the exchange-correlation energy was changed to HSE06, MgBi2O6 was trivial insulator in the equilibrium volume, but it became TSM under 7% hydrostatic tensile strain. MgBi2O6 might be an important platform to study the topological properties because of the two following advantages for measurements: (1) The nodal line, drumhead-liked surface state and Fermi Arc are very closely to the Fermi level; (2) The band structure is very “clean” (no other bulk bands except the related inverted conduction and valence bands around the Fermi level), which avoids the surface states been embedded into the bulk states.  相似文献   

9.
Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should have to remain coherent at ambient temperatures. Here, we studied temperature dependence of the electronic structure and the scattering rates on the surface of a model topological insulator, Bi2Se3, by high-resolution angle-resolved photoemission spectroscopy. We found an extremely weak broadening of the topological surface state with temperature and no anomalies in the state's dispersion, indicating exceptionally weak electron-phonon coupling. Our results demonstrate that the topological surface state is protected not only from elastic scattering on impurities, but also from scattering on low-energy phonons, suggesting that topological insulators could serve as a basis for room-temperature electronic devices.  相似文献   

10.
Using the continual model of a semi-infinite three dimensional (3D) topological insulator (TI) we study the effect of the surface potential (SP) on the formation of helical topological states near the surface. The results reveal that spatial profile and spectrum of these states strongly depend on the SP type and strength. We pay special attention to the 3D TI substrate/non-magnetic insulating overlayer system to illustrate the principles of the topological near-surface states engineering.  相似文献   

11.
Bulk Bi2Te3 is known to be a topological insulator. We investigate surface states of Bi2Te3(111) thin films of one to six quintuple layers using density-functional theory including spin-orbit coupling. We construct a method to identify topologically protected surface states of thin film topological insulators. Applying this method to Bi2Te3 thin films, we find that the topological nature of the surface states remains robust with the film thickness and that the films of three or more quintuple layers have topologically nontrivial surface states, which agrees with experiments.  相似文献   

12.
In this letter, we have studied transient photoinduced absorption in as‐grown nanocrystalline silicon films with thickness varied from 5 to 30 nm. Effects of quantum confinement (QC) in z ‐direction and grain boundary distortions alter the carrier dynamics of these films considerably. Based on the determination of critical points in the first Brillouin zone of the band structure of materials, we have time‐resolved the relaxation times of surface‐related states and indirect valleys. When decreasing the film thickness down to the QC limit (∼10 nm) new ultrafast relaxation mechanisms start to play a dominant role in carrier dynamics due to the topological disordering of these ultrathin films. These relaxation mechanisms seem to be related with the traping/de‐traping of the excited carriers prior to recombination. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.  相似文献   

14.
Topological insulators are states of quantum matter that have narrow topological nontrivial energy gaps and a large third‐order nonlinear optical response. The optical absorption of topological insulators can become saturated under strong excitation. In this work, with Bi2Se3 as an example, it was demonstrated that a topological insulator can modulate the operation of a bulk solid‐state laser by taking advantage of its saturable absorption. The result suggests that topological insulators are potentially attractive as broadband pulsed modulators for the generation of short and ultrashort pulses in bulk solid‐state lasers, in addition to other promising applications in physics and computing.  相似文献   

15.
Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dissipation electronics, spintronics, thermoelectrics, magnetoelectrics, and quantum computing due to their extremely large surface-to-volume ratios and exotic metallic edge/surface states. Layered Bi2Se3 and Bi2Te3 serve as reference topological insulator materials with a large nontrivial bulk gap up to 0.3 eV (equivalent to 3600 K) and simple single-Dirac-cone surface states. In this mini-review, we present an overview of recent advances in nanostructured topological insulator Bi2Se3 and Bi3Te3 from the viewpoints of controlled synthesis and physical properties. We summarize our recent achievements in the vapor-phase synthesis and structural characterization of nanostructured topological insulator Bi2Se3 and Bi2Te3, such as nanoribbons and ultrathin nanoplates.We also demonstrate the evolution of Raman spectra with the number of few-layer topological insulators, as well as the transport measurements that have succeeded in accessing the surface conductance and surface state manipulations in the device of topological insulator nanostructures.  相似文献   

16.
A differential coupling of topological surface states to left- versus right-circularly polarized light is the basis of many optospintronics applications of topological insulators. Here we report direct evidence of circular dichroism from the surface states of Bi(2)Se(3) using laser-based time-of-flight angle-resolved photoemission spectroscopy. By employing a novel sample rotational analysis, we resolve unusual modulations in the circular dichroism photoemission pattern as a function of both energy and momentum, which perfectly mimic the predicted but hitherto unobserved three-dimensional warped spin texture of the surface states. By developing a microscopic theory of photoemission from topological surface states, we show that this correlation is a natural consequence of spin-orbit coupling. These results suggest that our technique may be a powerful probe of the spin texture of spin-orbit coupled materials in general.  相似文献   

17.
Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.  相似文献   

18.
Recently, artificial photonic structures that exhibit nontrivial topological properties have attracted growing attention due to their capability of achieving one‐way backscatter immune transport of light. While photonic crystals are predominantly employed for achieving nontrivial topologies, effective medium approach based on metamaterials has been recently proposed for realizing topologically protected unidirectional surface states. In this article, a microscopic model to investigate the transmission of topological metamaterial grating is constructed based on the scattering processes involving unidirectional surface states. The numerically simulated transmission efficiency of the grating can be precisely reproduced by the model. The model demonstrates that the sharp transmission resonance of the grating results from the constructive interference of the topologically protected one‐way surface states. The present work provides an intuitive picture for understanding the scattering processes and resonance behaviors of the topologically protected one‐way surface states. Benefitting from the sharp spectral features of the supported resonances, the proposed grating structure may be potentially used for sensing applications.  相似文献   

19.
We generalize the topological response theory of three-dimensional topological insulators (TI) to metallic systems-specifically, doped TI with finite bulk carrier density and a time-reversal symmetry breaking field near the surface. We show that there is an inhomogeneity-induced Berry phase contribution to the surface Hall conductivity that is completely determined by the occupied states and is independent of other details such as band dispersion and impurities. In the limit of zero bulk carrier density, this intrinsic surface Hall conductivity reduces to the half-integer quantized surface Hall conductivity of TI. Based on our theory we predict the behavior of the surface Hall conductivity for a doped topological insulator with a top gate, which can be directly compared with experiments.  相似文献   

20.
Surface states--the electronic states emerging as a solid material terminates at a surface--are usually vulnerable to contaminations and defects. The robust topological surface state(s) (TSS) on the three-dimensional topological insulators provide a perfect platform for exploiting surface states in less stringent environments. Employing first-principles density functional theory calculations, we demonstrate that the TSS can play a vital role in facilitating surface reactions by serving as an effective electron bath. We use CO oxidation on gold-covered Bi(2)Se(3) as a prototype example, and show that the robust TSS can significantly enhance the adsorption energy of both CO and O(2) molecules, by promoting different directions of static electron transfer. The concept of TSS as an electron bath may lead to new design principles beyond the conventional d-band theory of heterogeneous catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号