首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and analyze the finite volume method for solving the variational inequalities of first and second kinds. The stability and convergence analysis are given for this method. For the elliptic obstacle problem, we derive the optimal error estimate in the H1‐norm. For the simplified friction problem, we establish an abstract H1‐error estimate, which implies the convergence if the exact solution uH1(Ω) and the optimal error estimate if uH1 + α(Ω),0 < α≤2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2?ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.  相似文献   

3.
In this work, the residual‐type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H1 norm and pressure in L2 norm are derived. Furthermore, a global upper bound of u ? uh in L2‐norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we study finite volume element approximations for two‐dimensional parabolic integro‐differential equations, arising in the modeling of nonlocal reactive flows in porous media. These types of flows are also called NonFickian flows and exhibit mixing length growth. For simplicity, we consider only linear finite volume element methods, although higher‐order volume elements can be considered as well under this framework. It is proved that the finite volume element approximations derived are convergent with optimal order in H1‐ and L2‐norm and are superconvergent in a discrete H1‐norm. By examining the relationship between finite volume element and finite element approximations, we prove convergence in L‐ and W1,∞‐norms. These results are also new for finite volume element methods for elliptic and parabolic equations. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 285–311, 2000  相似文献   

5.
In this article, we study the edge residual‐based a posteriori error estimates of conforming linear finite element method for nonmonotone quasi‐linear elliptic problems. It is proven that edge residuals dominate a posteriori error estimates. Up to higher order perturbations, edge residuals can act as a posteriori error estimators. The global reliability and local efficiency bounds are established both in H 1‐norm and L 2‐norm. Numerical experiments are provided to illustrate the performance of the proposed error estimators. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 813–837, 2014  相似文献   

6.
We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L2 norm. We then derive optimal a priori error estimates in the H1 and L2 norm for a FEM with variational crimes due to numerical integration. As an application, we derive a priori error estimates for a numerical homogenization method applied to nonlinear monotone elliptic problems. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 955–969, 2016  相似文献   

7.
In this paper, we introduce a Crank-Nicolson split least-squares Galerkin finite element procedure for parabolic integro-differential equations, arising in the modeling of nonlocal reactive flows in porous media. By selecting the least-squares functional properly, the procedure can be split into two independent sub-procedures, one of which is for the primitive unknown and the other is for the flux. By carefully choosing projections, we get optimal order H 1(Ω) and L 2(Ω) norm error estimates for u and sub-optimal (L 2(Ω)) d norm error estimate for σ with second-order accuracy in time increment. The numerical examples are given to testify the efficiency of the introduced scheme.  相似文献   

8.
A finite volume method based on stabilized finite element for the two‐dimensional nonstationary Navier–Stokes equations is investigated in this work. As in stabilized finite element method, macroelement condition is introduced for constructing the local stabilized formulation of the nonstationary Navier–Stokes equations. Moreover, for P1 ? P0 element, the H1 error estimate of optimal order for finite volume solution (uh,ph) is analyzed. And, a uniform H1 error estimate of optimal order for finite volume solution (uh, ph) is also obtained if the uniqueness condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

9.
This paper deals with optimal control problems constrained by linear elliptic partial differential equations. The case where the right‐hand side of the Neumann boundary is controlled, is studied. The variational discretization concept for these problems is applied, and discretization error estimates are derived. On polyhedral domains, one has to deal with edge and corner singularities, which reduce the convergence rate of the discrete solutions, that is, one cannot expect convergence order two for linear finite elements on quasi‐uniform meshes in general. As a remedy, a local mesh refinement strategy is presented, and a priori bounds for the refinement parameters are derived such that convergence with optimal rate is guaranteed. As a by‐product, finite element error estimates in the H1(Ω)‐norm, L2(Ω)‐norm and L2(Γ)‐norm for the boundary value problem are obtained, where the latter one turned out to be the main challenge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
We study a quasi-static incompressible flow of Bingham type with constituent law \[ \begin{array}{ll} T = p\left| {\cal E}u\right| ⁁{p-2}{\cal E}u+\beta \frac{{\cal E}u}{\left| {\cal E}u\right| } & \text{if }{\cal E}u\neq 0, \\ \left| T\right| \leq \beta & \text{if }{\cal E}u = 0, \end{array} \] T = p∣ℰup-2u+β ℰu ∣ℰu∣ if ℰu≠0, ∣T∣⩽β if ℰu = 0, where p≥2 and β>0. Here ℰu denotes the strain velocity and T the corresponding stress. The problem admits a variational formulation in the sense that the velocity field u minimizes the energy I(u) = ∫Ω∣ℰup+β∣ℰu∣dx in the space {vH1,p(Ω,ℝn): div v = 0} subject to appropriate boundary conditions. We then show smoothness of u on the set {x∈Ω: ℰu≠0}.  相似文献   

12.
In this article, unconditional superconvergent analysis of a linearized fully discrete mixed finite element method is presented for a class of Ginzburg–Landau equation based on the bilinear element and zero‐order Nédélec's element pair (Q11/Q01 × Q10). First, a time‐discrete system is introduced to split the error into temporal error and spatial error, and the corresponding error estimates are deduced rigorously. Second, the unconditional superclose and optimal estimate of order O(h2 + τ) for u in H1‐norm and p = ?u in L2‐norm are derived respectively without the restrictions on the ratio between h and τ, where h is the subdivision parameter and τ, the time step. Third, the global superconvergent results are obtained by interpolated postprocessing technique. Finally, some numerical results are carried out to confirm the theoretical analysis.  相似文献   

13.
Finite volume method and characteristics finite element method are two important methods for solving the partial differential equations. These two methods are combined in this paper to establish a fully discrete characteristics finite volume method for fully nonlinear convection‐dominated diffusion problems. Through detailed theoretical analysis, optimal order H1 norm error estimates are obtained for this fully discrete scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A nonconforming finite element method (FEM) is proposed for optimal control problems (OCPs) governed by monotone semilinear elliptic equations. The state and adjoint state are approximated by the nonconforming elements, and the control is approximated by the orthogonal projection of the adjoint state, respectively. Some global supercloseness and superconvergence estimates are achieved by making full use of the distinguish characters of this element, such as the interpolation equals to its Ritz projection, and the consistency error is 1 − ε ( is small enough) order higher than its interpolation error in the broken energy norm when the exact solution belongs to H3 − ε(Ω). Finally, some numerical results are presented to verify the theoretical analysis.  相似文献   

15.
LetΩ ? ?2 be a smooth bounded simply connected domain. Consider the functional $$E_\varepsilon (u) = \frac{1}{2}\int\limits_\Omega {\left| {\nabla u} \right|^2 + \frac{1}{{4\varepsilon ^2 }}} \int\limits_\Omega {(|u|^2 - 1)^2 } $$ on the classH g 1 ={u εH 1(Ω; ?);u=g on ?Ω} whereg:?Ω? → ? is a prescribed smooth map with ¦g¦=1 on ?Ω? and deg(g, ?Ω)=0. Let uu ε be a minimizer for Eε onH g 1 . We prove that uε → u0 in \(C^{1,\alpha } (\bar \Omega )\) as ε → 0, where u0 is identified. Moreover \(\left\| {u_\varepsilon - u_0 } \right\|_{L^\infty } \leqslant C\varepsilon ^2 \) .  相似文献   

16.
On the basis of rectangular partition and bilinear interpolation, this article presents alternating direction finite volume element methods for two dimensional parabolic partial differential equations and gives three computational schemes, one is analogous to Douglas finite difference scheme with second order splitting error, the second has third order splitting error, and the third is an extended locally one dimensional scheme. Optimal L2 norm or H1 semi‐norm error estimates are obtained for these schemes. Finally, two numerical examples illustrate the effectiveness of the schemes. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
In this article, we study the a posteriori H1 and L2 error estimates for Crouzeix‐Raviart nonconforming finite volume element discretization of general second‐order elliptic problems in ?2. The error estimators yield global upper and local lower bounds. Finally, numerical experiments are performed to illustrate the theoretical findings. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

18.
A residual‐type a posteriori error estimator is proposed and analyzed for a modified weak Galerkin finite element method solving second‐order elliptic problems. This estimator is proven to be both reliable and efficient because it provides computable upper and lower bounds on the actual error in a discrete H1‐norm. Numerical experiments are given to illustrate the effectiveness of the this error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 381–398, 2017  相似文献   

19.
In this article, a new mixed discontinuous Galerkin finite element method is proposed for the biharmonic equation in two or three‐dimension space. It is amenable to an efficient implementation displaying new convergence properties. Through an auxiliary variable , we rewrite the problem into a two‐order system. Then, the a priori error estimates are derived in L2 norm and in the broken DG norm for both u and p. We prove that, when polynomials of degree r () are used, we obtain the optimal convergence rate of order r + 1 in L2 norm and of order r in DG norm for u, and the order r in both norms for . The numerical experiments illustrate the theoretic order of convergence. For the purpose of adaptive finite element method, the a posteriori error estimators are also proposed and proved to field a sharp upper bound. We also provide numerical evidence that the error estimators and indicators can effectively drive the adaptive strategies. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 318–353, 2017  相似文献   

20.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号