首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The fight against tuberculosis (TB) is a time immemorial one and the emergence of new drug resistant strains of Mycobacterium tuberculosis keeps throwing new challenges to the scientific community immersed in finding mechanisms to control this dreaded disease. Computer aided drug designing (CADD) is one of the several approaches that can assist in identifying the potent actives against Mycobacterium. In this work, a series of 109 known Mycobacterial membrane proteins large 3 (MmpL3) inhibitors were pooled and atom based 3D QSAR analysis was performed to understand the structural features essential for inhibitory activity against the MmpL3, known to be a key player in transporting substances critical for cell wall integrity of Mycobacterium. The data set employed was randomly split into training set and test set molecules. The training set of 74 molecules was used to derive CoMFA and CoMSIA models that were statistically reliable (CoMFA: q2loo = 0.53; r2ncv = 0.93 and CoMSIA: q2loo = 0.60; r2ncv = 0.93). The derived models also exhibited good external predictive ability (CoMFA: r2pred = 0.78 and CoMSIA: r2pred = 0.79). The results are quite encouraging and information derived from these analyses was applied to design new molecules. The designed molecule showed appreciable predicted activity values and reasonably good ADMET profile. The strategy used in designing new molecules can be pursued in the hunt for new chemical entities targeting MmpL3, expanding the existing arsenal against TB.  相似文献   

2.
Phosphoinositide-dependent protein kinase-1 (PDK1) is a Ser/Thr kinase which phosphorylates and activates members of the AGC kinase group known to control processes such as tumor cell growth, protection from apoptosis, and tumor angiogenesis. In this paper, CoMFA and CoMSIA studies were carried out on a training set of 56 conformationally rigid indolinone inhibitors of PDK1. Predictive 3D QSAR models, established using atom fit alignment rule based on crystallographic-bound conformation, had cross-validated (r cv2) values of 0.738 and 0.816 and non-cross-validated (r ncv2) values of 0.912 and 0.949 for CoMFA and CoMSIA models, respectively. The predictive ability of the CoMFA and CoMSIA models was determined using a test set of 14 compounds, which gave predictive correlation coefficients (r pred2) of 0.865 and 0.837, respectively. Structure-based interpretation of the CoMFA and CoMSIA field properties provided further insights for the rational design of new PDK1 inhibitors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
朱丽荔  徐筱杰 《中国化学》2003,21(3):261-269
Two kinds of Three-dimensional Quantitative Structure-activity Relationship(3D-QSAR) methods,comparative molecular filed analysis(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) ,were applied to analyze the structure-activity relationship of a series of 63 butenolide ETA selective antagonists with respect to their inhibition against human ETA receptor,The CoMFA and CoMSIA models were developed for the conceivable alignment of the molecules based on a template structure from the crystallized data.The statistical results from the initial orientation of the aligned molecules show that the 3D-QSAR model from CoMFA(q^2=0.543) is obviously superior to that from the conventional CoMSIA(q^2=0.407).In order to refine the model,all-space search (ASS) was applied to minimize the field sampling process.By rotating and translating the molecular aggregate within the grid systematically,all the possible samplings of the molecular fields were tested and subsequently the one with the highest q^2 was picked out .The comparison of the sensitivity of CoMFA and CoMSIA to different space orientation shows that the CoMFA q^2 values are more sensitive to the translations and rotations of the aligned molecules with respect to the lattice than those of CoMSIA.The best CoMFA model from ASS was further refined by the region focused technique.The high quality of the best model is indicated by the high corss-validated correlation and the prediction on the external test set.The CoMFA coefficient contour plots identify several key features that explain the wide range of activities,which may help us to design new effective ETA selective antagonists.  相似文献   

5.
6.
The chromatographic hydrophobicity index (CHI) is an HPLC‐based parameter that provides reliable guidance in optimization of pharmacological efficiency and adsorption, distribution, metabolism and exertion (ADME) profile of drug candidates. In the present work, classical and three‐dimensional quantitative structure–property relationship (QSPR) models were developed for prediction of CHI values of some 4‐hydroxycoumarin analogs on immobilized artificial membrane column. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) as 3D–QSPR methods were performed to gain insight into the key structural factors affecting on the chromatographic hydrophobicity of interested chemicals. The calculated parameters of Q 2, R 2 and standard error were 0.545, 0.996 and 0.773 for CoMFA model and 0.815, 0.986 and 1.44 for CoMSIA model, respectively. The contour maps for steric fields of the CoMFA model illustrate that the hydrophobicity of chemicals will be higher when the positions of R6, R7 and R8 in the 4‐hydroxycuomarin ring are substituted by alkyl groups. Moreover, by the analysis of the plots of electrostatic fields, it was concluded that the CHI value greatly increases if one hydrogen on coumarin ring is substituted by the F, Cl, Br, OH or OCH3 group.  相似文献   

7.
In this study we designed novel substituted benzimidazole derivatives and predicted their absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, based on a predictive 3D QSAR study on 132 substituted benzimidazoles as AngII–AT1 receptor antagonists. The two best predicted compounds were synthesized and evaluated for AngII–AT1 receptor antagonism. Three different alignment tools for comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used. The best 3D QSAR models were obtained using the rigid body (Distill) alignment method. CoMFA and CoMSIA models were found to be statistically significant with leave-one-out correlation coefficients (q2) of 0.630 and 0.623, respectively, cross-validated coefficients (r2cv) of 0.651 and 0.630, respectively, and conventional coefficients of determination (r2) of 0.848 and 0.843, respectively. 3D QSAR models were validated using a test set of 24 compounds, giving satisfactory predicted results (r2pred) of 0.727 and 0.689 for the CoMFA and CoMSIA models, respectively. We have identified some key features in substituted benzimidazole derivatives, such as lipophilicity and H-bonding at the 2- and 5-positions of the benzimidazole nucleus, respectively, for AT1 receptor antagonistic activity. We designed 20 novel substituted benzimidazole derivatives and predicted their activity. In silico ADMET properties were also predicted for these designed molecules. Finally, the compounds with best predicted activity were synthesized and evaluated for in vitro angiotensin II–AT1 receptor antagonism.  相似文献   

8.
用比较分子场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA)研究了38个五元杂环并嘧啶衍生物类胸苷酸合成酶抑制剂的三维定量构效关系(3D-QSAR), 建立了相关预测模型. CoMFA和CoMSIA模型的交互验证相关系数q2分别为0.662和0.672、非交互验证相关系数R2分别为0.921和0.884、外部交互验证相关系数Qext2分别为0.85和0.81. 分子对接得到的结合模式与三维定量构效关系得到的结果一致. 结果表明这两种模型都具有良好的预测能力, 可应用于指导化合物的设计和结构修饰, 为进一步设计新型胸苷酸合成酶抑制剂提供了理论依据.  相似文献   

9.
A grid potential analysis employing a novel approach of 3D quantitative structure–activity relationships (QSAR) as AutoGPA module in MOE2009.10 was performed on a dataset of 42 compounds of N‐arylsulfonylindoles as anti‐HIV‐1 agents. The uniqueness of AutoGPA module is that it automatically builds the 3D‐QSAR model on the pharmacophore‐based molecular alignment. The AutoGPA‐based 3D‐QSAR model obtained in the present study gave the cross‐validated Q2 value of 0.588, r2pred value of 0.701, r2m statistics of 0.732 and Fisher value of 94.264. The results of 3D‐QSAR analysis indicated that hydrophobic groups at R1 and R2 positions and electron releasing groups at R3 position are favourable for good activity. To find similar analogues, virtual screening on ZINC database was carried out using generated AutoGPA‐based 3D‐QSAR model and showed good prediction. In addition to those mentioned earlier, in‐silico ADME absorption, distribution, metabolism and excretion profiling and toxicity risk assessment test was performed, and results showed that majority of compounds from current dataset and newly virtually screened hits generated were within their standard limit. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The development of selective lymphocyte‐specific kinase (Lck) inhibitors has attracted much attention for the research of the treatment of T‐cell mediated autoimmune and inflammatory diseases. In the present work, three‐dimensional quantitative structure–activity relationship (3D‐QSAR) analyses are performed on a novel series of 4‐amino‐6‐benzimidazole‐pyrimidines acting as Lck inhibitors. The established 3D‐QSAR models show significant statistical quality and satisfactory predictive ability, with high q2 and R2 values: the comparative molecular field analysis (CoMFA) model (q2 = 0.802, R2 = 0.991), and the comparative molecular similarity indexes analysis (CoMSIA) model (q2 = 0.731, R2 = 0.982). The systemic external validation indicates that both CoMFA and CoMSIA models are quite robust and possess high predictive abilities with values of 0.881 and 0.877, values of 0.897 and 0.847, values of 0.897 and 0.850, and values of 0.897 and 0.854, respectively. Several key structural features accounting for the inhibitory activities of these compounds are discussed. Based on established models and design considerations, six new compounds with significantly improved activities are theoretically designed, which still await experimental confirmation and evaluation. These theoretical results may provide a useful reference for understanding the action mechanism and designing novel potential Lck inhibitors. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
SGLT2 has become a target of therapeutic interest in diabetes research. CoMFA and CoMSIA studies were performed on C-aryl glucoside SGLT2 inhibitors (180 analogues) as potential anti-diabetic agents. Three different alignment strategies were used for the compounds. The best CoMFA and CoMSIA models were obtained by means of Distill rigid body alignment of training and test sets, and found statistically significant with cross-validated coefficients (q 2) of 0.602 and 0.618, respectively, and conventional coefficients (r 2) of 0.905 and 0.902, respectively. Both models were validated by a test set of 36 compounds giving satisfactory predicted correlation coefficients (r 2 pred) of 0.622 and 0.584 for CoMFA and CoMSIA models, respectively. A comparison was made with earlier 3D QSAR study on SGLT2 inhibitors, which shows that our 3D QSAR models are better than earlier models to predict good inhibitory activity. CoMFA and CoMSIA models generated in this work can provide useful information to design new compounds and helped in prediction of activity prior to synthesis.  相似文献   

12.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

13.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

14.
Quantitative structure–activity relationship (QSAR) studies were conducted on an in-house database of cytochrome P450 enzyme 1A2 inhibitors using the comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA) and hologram QSAR (HQSAR) approaches. The database consisted of 36 active molecules featuring varied core structures. The model based on the naphthalene substructure alignment incorporating 19 molecules yielded the best model with a CoMFA cross validation value q2 of 0.667 and a Pearson correlation coefficient r2 of 0.976; a CoMSIA q2 value of 0.616 and r2 value of 0.985; and a HQSAR q2 value of 0.652 and r2 value of 0.917. A second model incorporating 34 molecules aligned using the benzene substructure yielded an acceptable CoMFA model with q2 value of 0.5 and r2 value of 0.991. Depending on the core structure of the molecule under consideration, new CYP1A2 inhibitors will be designed based on the results from these models.  相似文献   

15.
Alzheimer’s disease (AD) is a multifactorial and polygenic disease. It is the most prevalent reason for dementia in the aging population. A dataset of twenty-six 1,2,3-triazole-based derivatives previously synthetized and evaluated for acetylcholinesterase inhibitory activity were subjected to the three-dimensional quantitative structure-activity relationship (3D-QSAR) study. Good predictability was achieved for comparative molecular field analysis (CoMFA) (Q2 = 0.604, R2 = 0.863, rext2 = 0.701) and comparative molecular similarity indices analysis (CoMSIA) (Q2 = 0.606, R2 = 0.854, rext2 = 0.647). The molecular features characteristics provided by the 3D-QSAR contour plots were quite useful for designing and improving the activity of acetylcholinesterase of this class. Based on these findings, a new series of 1,2,3-triazole based derivatives were designed, among which compound A1 with the highest predictive activity was subjected to detailed molecular docking and compared to the most active compound. The selected compounds were further subjected to 20 ns molecular dynamics (MD) simulations to study the comparative conformation dynamics of the protein after ligand binding, revealing promising results for the designed molecule. Therefore, this study could provide worthy guidance for further experimental analysis of highly effective acetylcholinesterase inhibitors.  相似文献   

16.
The Aurora proteins are critical regulators of major mitotic events and attractive targets for anticancer therapy. 3D‐QSAR studies based on molecular docking were performed on a dataset of 40 4‐aminoquinazolines compounds. The CoMSIA model produced significantly better results than CoMFA model, with q2=0.652 and r2=0.991. The contours analysis provides useful information about the structural requirements for 4‐aminoquinazolines for inhibiting Aurora B. Scaffold hopping method was used to generate new structures based on the maximum common substructure of the training and test set compounds. The ADMET property, binding affinity and inhibitory activity of the new designed compounds were predicted, respectively. Finally 16 compounds were identified as the novel inhibitors for Aurora B kinase.  相似文献   

17.
18.

As per the World Health Organization (WHO), cancer is the second most leading cause of death after cardiovascular diseases in worldwide with around 9.88 million total new cases and 1.08 million were observed due to skin cancer in 2018. Amongst two types of skin cancer, progression of melanoma cancer is increasing day by day due to the environmental changes than non-melanoma cancer. Most of B-Raf mutation, specifically B-RafV600E, is responsible for the progression of the melanoma cancer. Here, various 3D-QSAR techniques like comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular hologram QSAR (HQSAR) and topomer CoMFA were used to design novel B-Raf inhibitors by using 28 synthetic B-Raf inhibitors. Except for topomer CoMFA model, remaining models were generated by three different alignment methods in which distil-based alignment method was found best and gave prominent statistical values. After performing N-fold statistical validation, in CoMFA, q2, r2 and r2pred values were found to be 0.638, 0.969 and 0.848, respectively. Similarly, q2, r2 and r2pred values were found to be 0.796, 0.978 and 0.891 in CoMSIA (SHD) and 0.761, 0.973 and 0.852 in CoMSIA (SH) by N-fold statistical validation. In HQSAR analysis, statistical values were found for q2 as 0.984, r2 as 0.999 and r2pred as 0.634 with 97 as best hologram length (BHL). The results of topomer CoMFA showed the q2 value of 0.663 and the r2 value of 0.967. Important features of purinylpyridine were identified by contour map analysis of all 3D-QSAR techniques, which could be useful to design the novel molecules as B-Raf inhibitors for the treatment of melanoma cancer.

  相似文献   

19.
Abstract

This study has investigated docking-based 3D quantitative structure–activity relationships (QSARs) for a range of quinoline carboxylic acid derivatives by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). A docking study has shown that most of the compounds formed H-bonds with Arg136 and Gln47, which have already been shown to be essential for the binding of ligands at the active site of the hydroorotate dehydrogenase adenovirus (hDHODH). Bioactive conformations of all the molecules obtained from the docking study were used for the 3D QSAR study. The best CoMFA and CoMSIA models were obtained for the training set and were found to be statistically significant, with cross-validated coefficients (q2 ) of 0.672 and 0.613, r2 cv of 0.635 and 0.598 and coefficients of determination (r2 ) of 0.963 and 0.896, respectively. Both models were validated by a test set of 15 compounds, giving satisfactory predicted correlation coefficients (r2 pred) of 0.824 and 0.793 for the CoMFA and CoMSIA models, respectively. From the docking-based 3D QSAR study we designed 34 novel quinoline-based compounds and performed structure-based virtual screening. Finally, in silico pharmacokinetics and toxicities were predicted for 24 of the best docked molecules. The study provides valuable information for the understanding of interactions between hDHODH and the novel compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号