首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 687 毫秒
1.
李艳强  贲腾  裘式纶 《化学学报》2015,73(6):605-610
通过简单的一步碳化方法, 以含氮的多孔有机骨架JUC-Z2为碳前驱物制备出氮掺杂多孔碳材料. 与原始JUC-Z2材料相比, 制备的多孔碳材料显示出明显提高的气体吸附量和增强的吸附焓. 其中JUC-Z2-900的CO2吸附量高达113 cm3·g-1, H2吸附量也达到246 cm3·g-1, 超过了大部分报道的多孔材料. 尤其是JUC-Z2-900的CH4吸附量在273 K, 1 bar下高达60 cm3·g-1, 据我们所知, 这一值为目前报道材料的最高值. 除此之外, 样品还显示出选择性吸附CO2的能力, 273 K下, JUC-Z2-900的CO2/N2的选择性高达10, CO2/H2的选择性也高达66. 另外, 样品具有很高的热稳定性, 有望应用在碳捕获和清洁能源储存等领域.  相似文献   

2.
孙成珍  白博峰 《物理化学学报》2018,34(10):1136-1143
二维石墨烯纳米孔中气体分子的选择性渗透对多孔石墨烯分离膜非常重要。本文采用分子动力学方法研究了气体分子在氮氢修饰石墨烯纳米孔中的渗透特性,从分子的大小和结构、纳米孔的构型以及分子与石墨烯之间的作用强度等角度阐明了分子出现选择性渗透的原因。结果表明,不同分子的渗透率不同,即H2O>H2S>CO2>N2>CH4。渗透率跟分子的质量和直径以及分子在石墨烯表面上的吸附密度有关;根据气体分子动理学理论,渗透率跟分子质量成反比关系;而分子在石墨烯表面上的高吸附密度对渗透起促进作用。对于H2O和CH4分子,分子直径起主导作用;H2O分子直径最小,其渗透率最大;同理,CH4分子的渗透率最小。对于H2S和CO2分子,H2S分子的直径较大,但其与石墨烯之间的作用强度较大(吸附密度较高),导致渗透率较高;对于CO2和N2分子,CO2分子的直径较小,并且与石墨烯之间的作用强度较大,渗透率较高。同时发现,分子在纳米孔中的渗透使得其在石墨烯表面的密度分布极不均匀。纳米孔左右两侧的功能化氮原子使CH4分子容易从孔两侧区域穿过,而其它分子由于直径较小在纳米孔中心区域穿过的概率最大。分子与石墨烯之间的作用越强,导致分子在石墨烯表面区域内停留的时间越长,最终使其在渗透纳米孔的过程中所经历的时间越长。本文所采用的氮氢修饰石墨烯纳米孔中,分子渗透速率达到~10-3 mol·s-1·m-2·Pa-1,并且其它分子相对于CH4分子的选择性也很高,说明基于该类型纳米孔的多孔石墨烯分离膜在天然气处理等工业气体分离领域具有很好的应用前景。  相似文献   

3.
研究了在usf型类沸石金属-有机骨架材料(usf-ZMOF)中不同金属离子(Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Al3+)对天然气分离(以CO2/CH4, CO2/H2, CO2/N2为研究对象)的不同影响. 结果表明, 此类材料对于3种体系的分离选择性均高于现有材料. 其中性能最好的是Al-usf-ZMOF, 其对CO2/CH4, CO2/N2和CO2/H2的分离选择性分别为290, 1700和16800. 同时, 对于经不同的离子交换后的usf-ZMOF, 吸附选择性随着离子电荷值的增加而增大; 对于同一主族的离子, 选择性随着原子序数的增加而减小. 而上述现象的产生是由阳离子和CO2间的强静电作用所致.  相似文献   

4.
刘洋  夏潇潇  谭媛元  李松 《化学学报》2020,78(3):250-255
变压吸附(PSA)制取O2的核心是吸附剂.近年来,金属有机骨架(MOFs)被认为是一种具有广阔应用前景的新型吸附剂.通过水热法制备了MIL-101(Cr)/氧化石墨烯(GO).结果表明,MIL-101(Cr)/GO-15具有更高的比表面积(3486 m2·g-1)和更大的孔体积(2.39 cm3·g-1),因此也表现出更高的O2吸附量(0.54 mmol·g-1).进一步根据理想吸附溶液理论(IAST)预测了其在O2/N2体积比为1:4混合气体中的O2/N2选择性为1.2,相比MIL-101(Cr)提高了17.65%.同时,MIL-101(Cr)/GO-15的循环利用性能更佳,经过三次O2吸脱附循环后,依然拥有高达80%的O2吸附量,具有较好的循环再生性能.  相似文献   

5.
通过简单的离子热法,以四(4-氰基联苯基)硅烷作为四面体基块,将其与无水氯化锌在充满氩气气氛的手套箱中充分研磨后密封,分别以400和550 ℃的反应温度合成了新型多孔芳香骨架材料(PAF-51),得到PAF-51-1(400 ℃条件下)与PAF-51-2(550 ℃条件下)的比表面积分别为720和557 m2·g-1 (BET).与CH4和N2对比,该材料对CO2具有极好的选择性吸附能力. 273 K条件下,CO2/N2分离指数最高可达52.2,CO2/CH4分离指数也达到10.3,这一性质极有可能使得PAF-51成为捕获CO2理想材料,并对再生能源具有潜在的应用.  相似文献   

6.
赵洋  王笑颜  张崇  蒋加兴 《化学学报》2015,73(6):634-640
共轭微孔聚合物由于其在气体吸附与分离、非均相催化和光电子等领域的巨大应用前景而广受关注. 本文以四苯基乙烯为基本构筑单元, 通过Sonogashira-Hagihara偶联反应制备了3种共轭微孔聚合物新材料, 研究了结构组成和构建模块对制备聚合物孔性能和气体吸附性能的影响. 氮气吸附测试结果表明, 由1,1,2,2-四炔四苯基乙烯自聚合制备的TPE-CMP1具有较大的比表面积, 为1096 m2·g-1. 在1.13 bar/273 K条件下, TPE-CMP1的CO2吸附能力为2.36 mmol·g-1; 在1.13 bar/77.3 K条件下, TPE-CMP1对H2的吸附能力为1.35 wt%. 另外, 制备的共轭微孔聚合物展示出较高的CO2/N2选择性吸附值. 由于这类多孔聚合物材料具有合成方法简单、优良的物理化学及热稳定性、高的比表面积和CO2吸附性能, 因此将在气体吸附与分离方面具有潜在的应用前景.  相似文献   

7.
有机微孔聚合物(MOPs)在气体存储、吸附分离和非均相催化等领域具有优良性质而广受关注.近年来,聚芳撑乙炔微孔骨架材料的研究成为MOPs领域中的热点.分别以三(4-乙炔基)苯胺、甲基三(4-乙炔基苯基)硅烷、苯基三(4-乙炔基苯基)硅烷为基本构筑单元,通过端炔基氧化均聚的方法,制备了三种聚芳撑乙炔微孔骨架材料,研究了结构组成对制备聚合物孔道性能和气体吸附性能的影响.氮气吸附测试结果表明,聚合物的Brunauer-Emmett-Teller (BET)比表面积的范围在602~715 m2·g-1.由于骨架中含有富氮基团(三苯胺)以及具有较大的比表面积,在1.13 bar/273 K条件下,聚三(4-乙炔基)苯胺(TEPA-MOP)的CO2吸附能力为1.59 mmol·g-1.此外,TEPA-MOP和聚苯基三(4-乙炔基苯基)硅烷(TEPP-MOP)具有优良的选择性吸附性能,对CO2/N2的选择性吸附分别是69.9和73.2.聚合物TEPA-MOP具有优异的CO2/N2的选择吸附性和适中的CO2吸附能力,因此将在气体吸附与分离方面具有潜在的应用前景.  相似文献   

8.
在以前的工作中, 我们利用蒙特卡洛和分子动力学模拟计算了具有互穿性结构及混合配体的金属-有机骨架材料(metal-organic frameworks, MOFs)分离CH4/H2的吸附选择性及扩散选择性. 研究了材料的互穿结构及混合配体对材料用于分离CH4/H2性能的影响. 在本工作中, 我们将以前的工作进行了扩展, 详细研究了材料的互穿结构及混合配体对材料用于分离CO2/CH4, CO2/N2和CO2/H2等含有CO2的气体混合物性能的影响. 此外, 为了进一步阐明材料的结构对于其分离性能的影响, 我们亦研究了材料用于分离CH4/H2及CH4/N2. 从我们的结果可以看出, 相比无互穿结构的MOFs材料, 具有互穿结构的MOFs材料对所研究的所有混合气体的渗透选择性明显提高. 这是因为具有互穿结构的MOFs材料对混合气体的吸附选择性明显高于无互穿结构的MOFs材料. 结果表明, 如果将材料作为膜用于气体混合物分离, 使材料产生互穿结构是提高材料分离性能的一个很好的策略.  相似文献   

9.
通过浓凝胶转换法合成了一种厚度约为50 nm, 大小约为200 nm的纳米片状SAPO-34分子筛, 经XRD, SEM, ICP和氮气(77 K)吸附-脱附等方法对其进行了表征, 结果显示, 相比于微米级立方体形的SAPO-34 (2 μm), 本文合成的纳米片状SAPO-34表现出更高的比表面积(818.68 m2/g)和孔容(0.57 cm3/g). 比表面和孔容积的增大使其气体吸附容量得到较大的提升, 其中CH4的吸附容量达到25.74 cm3/g, 提升了60%, 高于绝大多数分子筛吸附剂, 同时CH4/N2的吸附选择性未出现明显下降(3.1), 且达到商用吸附剂水平(>3.0). 通过CH4/N2(体积比1∶1, 298 K)混合气体穿透测试证明所合成的纳米SAPO-34是一种有效的CH4/N2分离吸附剂, 在煤层气富集脱氮工业中具有极大的应用潜力.  相似文献   

10.
采用分子动力学方法模拟CH4/CO2混合气体在多孔石墨烯分离膜中的分离过程, 分析了3 种纳米孔功能化修饰(N/H 修饰、全H修饰和N/―CH3修饰)对分离过程的影响规律. 模拟结果表明气体分子会在石墨烯表面形成吸附层, CO2分子的吸附强度高于CH4分子. 纳米孔的功能化修饰不仅减小了纳米孔的可渗透面积, 还通过影响纳米孔边缘原子的电荷分布提高了气体分子的吸附强度, 进而影响了混合气体分子在多孔石墨烯分离膜中的渗透性和选择性. CO2分子在多孔石墨烯中的渗透率能达到106 GPU (1 GPU=3.35×10-10 mol·s-1·m-2·Pa-1), 远远高于传统的聚合物分离膜. 研究表明多孔石墨烯分离膜在天然气处理、CO2捕获等工业气体分离过程中具有广泛的应用前景.  相似文献   

11.
以聚丙烯腈(PAN)和三聚氰胺为原料,通过静电纺丝法制备了三聚氰胺改性聚丙烯腈纳米纤维前驱体,经预氧化、碳化后得到交联的多孔纳米碳纤维.采用红外光谱(FTIR)仪、热重分析(TGA)仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪、拉曼光谱仪和比表面积分析仪等对前驱体及纤维进行了表征.结果表明,经过三聚氰胺改性的聚丙烯腈纳米纤维前驱体在碳化后有效地交联,形成含有微孔、介孔和大孔多级的合理孔道结构,氮掺杂量高达14.3%,纤维直径大幅缩减,平均直径仅约89 nm.电化学测试结果表明,交联多孔纳米碳纤维电极在0.05 A·g-1电流密度下未经活化时的质量比电容值高达194 F·g-1(0.05 A·g-1),在2 A·g-1的电流密度下经过1000次循环充放电后的比电容仍然保持99.2%,表现出优异的电化学特性.  相似文献   

12.
采用分子模拟与吸附理论研究了天然气成分在有序介孔碳材料CMK-3上的吸附和分离.巨正则系综蒙特卡罗(GCMC)模拟表明,CH4和CO2气体的较优存储条件分别为208 K、4 MPa和298 K、6 MPa,其最大超额吸附量分别为10.07和14.85 mmol· g-1.基于双位Langmuir-Freundlich (DSLF)模型,使用理想吸附溶液理论(IAST)预测了不同二元混合物在CMK-3中的分离行为,发现吸附选择性Sco2/CH4与ScH4/N2比较接近,在298 K和4 MPa下约等于3,而N2-CO2体系中的CO2吸附选择性较高,可达到7.5,说明CMK-3是一种适合吸附和分离天然气组分的碳材料.  相似文献   

13.
Polyallylamine (PAAm) was synthesized by free radical polymerization and characterized by Fourier transform infrared resonance (FT-IR) spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy and differential scanning calorimetry (DSC). The composite membranes were prepared by using PAAm–poly(vinyl alcohol) (PVA) blend polymer as the separation layer and polysulfone (PSF) ultrafiltration membranes as the support layer. The surface and cross-section morphology of the membrane was inspected by environmental scanning electron microscopy (ESEM). The gas transport property of the membranes, including gas permeance, flux and selectivity, were investigated by using pure CO2, N2, CH4 gases and CO2/N2 gas mixture (20 vol% CO2 and 80 vol% N2) and CO2/CH4 gas mixture (10 vol% CO2 and 90 vol% CH4). The plots of gas permeance or flux versus feed gas pressure imply that CO2 permeation through the membranes follows facilitated transport mechanism whereas N2 and CH4 permeation follows solution–diffusion mechanism. Effect of PAAm content in the separation layer on gas transport property was investigated by measuring the membranes with 0–50 wt% PAAm content. With increasing PAAm content, gas permeance increases initially, reaches a maximum, and then decreases gradually. For CO2/N2 gas mixture, the membranes with 10 wt% PAAm content show the highest CO2 permeance of about 1.80 × 10−5 cm3 (STP) cm−2 s−1 KPa−1 and CO2/N2 selectivity of 80 at 0.1 MPa feed gas pressure. For CO2/CH4 gas mixture, the membranes with 20 wt% PAAm content display the highest CO2 permeance of about 1.95 × 10−5 cm3 (STP) cm−2 s−1 KPa−1 and CO2/CH4 selectivity of 58 at 0.1 MPa feed gas pressure. In order to explore the possible reason of gas permeance varying with PAAm content, the crystallinity of PVA and PAAm–PVA blend polymers was measured by X-ray diffraction (XRD) spectra. The experimental results show an inverse relationship between crystallinity and gas permeance, e.g., a minimum crystallinity and a maximum CO2 permeance are obtained at 20 wt% PAAm content, indicating that the possibility of increasing CO2 permeance with PAAm content due to the increase of carrier concentration could be weakened by the increase of crystallinity.  相似文献   

14.
以沥青和煤矸石为原料,经炭化、活化后获得型体活性炭材料(AC),并在此基础上进行水热晶化,研究晶化时间对复合材料中4A沸石的形成、孔结构和甲烷、氮气吸附性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、77 K下的氮气吸附-脱附以及273 K下的CO_2吸附等温线对样品进行表征,结果表明水热晶化后,复合材料中的硅铝形成立方结构的4A沸石,出现了0.45~0.6 nm的微孔,微孔孔容增加,并伴有少量的中孔和大孔。复合材料在298 K下的甲烷(CH_4)和氮气(N_2)吸附等温线的结果表明,晶化时间6 h的复合材料AC-2的甲烷吸附量被提高至10.8 m L/g,并保持较高的CH4/N2平衡分离比(3.7)。  相似文献   

15.
A silica membrane was produced by chemical vapor deposition using tetraethoxysilane (TEOS), phenyltriethoxysilane (PTES) or diphenyldiethoxysilane (DPDES) as the Si source. Amorphous silica was deposited in the mesopores of a γ-alumina film coated on a porous -alumina tube, by evacuating the reactant through the porous wall. Hydrogen permeance at a permeation temperature of 600°C was of the order of 10−7 mol m−2 s−1 Pa−1, and was not greatly dependent on the Si sources. The silica membrane produced using TEOS contained micropores permeable to both helium and hydrogen, but CO2 and larger molecules were only slightly permeated through those mesopores which were left unplugged. The silica membrane produced from DPDES showed a single-component CO2 permeance equivalent to that of single-component He, and CO2/N2 selectivity was approximately 9 at a permeation temperature of 30°C. When a mixture of CO2 and N2 was fed, however, CO2 permeance decreased to the level of N2 permeance. The H2/N2 selectivity, determined from single-component permeances to H2 and N2, was approximately 100, and these permeances remained unchanged when an equimolar mixture of H2 and N2 was fed. Thus, the DPDES-derived membrane possessed two types of micropores, abundant pores through which helium and hydrogen permeated and a small number of pores in which molecules of CO2 and N2 were permeable but not able to pass one another. Neither meso or macropores remained in the DPDES membrane.  相似文献   

16.
The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. Thereby, great catalytic activity and stability could be obtained during the dry reforming of methane reaction.  相似文献   

17.
钟梅  马凤云 《燃料化学学报》2013,41(12):1427-1436
在连续进出料的流化床中研究了热解温度为850 ℃时,含有O2、H2、CO、CO2、CH4的反应气氛对热解产物分配规律及产品组成的影响。采用Raman、BET等测试方法对不同热解气氛下制得半焦的品质进行了评价,结合热重分析了影响半焦反应活性的因素。结果表明,无O2气氛下,H2与CO2存在时降低了焦油产率,而CO与CH4促进了焦油的生成。CH4的裂解析碳使半焦产率上升。O2的加入使CO2、CO含量明显增加,半焦及焦油产率降低。N2中引入O2时,PAHs含量降低。CH4促进了烷基萘与苯类的生成,CO则抑制酚类裂解生成苯类。CO2的气化作用促进了微孔的生成,相应地,半焦的比表面积快速增加,半焦的反应活性也最高。CO歧化与CH4热裂解产生的析碳堵塞了部分孔道,降低了比表面积。H2与CH4所产生的氢自由基能渗透到半焦内部,引起半焦结构的缩聚,进而影响氧化反应活性。  相似文献   

18.
Supported carbon molecular sieve membranes based on a phenolic resin   总被引:7,自引:0,他引:7  
The preparation of a composite carbon membrane for separation of gas mixtures is described. The membrane is formed by a thin microporous carbon layer (thickness, 2 μm) obtained by pyrolysis of a phenolic resin film supported over a macroporous carbon substrate (pore size, 1 μm; porosity, 30%). The microporous carbon layer exhibits molecular sieving properties and it allows the separation of gases depending on their molecular size. The micropore size was estimated to be around 4.2 Å. Single and mixed gas permeation experiments were performed at different temperatures between 25°C and 150°C, and pressures between 1 and 3.5 bar. The carbon membrane shows high selectivities for the separation of permanent gases like O2/N2 system (selectivity≈10 at 25°C). Gas mixtures like CO2/N2 and CO2/CH4 are successfully separated by means of prepared membranes. For example, the membrane prepared by carbonization at 700°C shows at 25°C the following separation factors: CO2/N2≈45 and CO2/CH4≈160.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号