首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this paper, a quasistatic finite element model of a spur gear pair is developed. A node-to-target contact formulation is given, where calculations of initial gaps are based upon the actual geometry of the gear flanks rather than upon a contact node and a facet or a line segment. By using a special contact search algorithm, profile modifications and mounting errors are easily incorporated in the analysis. The problem, which also includes friction, is solved by using a nonsmooth Newton method. The static transmission error can be calculated with accuracy with a relatively small number of nodes along the gear flanks. Several examples are given in order to demonstrate the model.  相似文献   

2.
ABSTRACT

An approximate theoretical analysis is presented for a rigid, perfectly plastic clamped beam struck transversely at the mid-span by a mass which produces Finite transverse displacements. An alternative quasi-static procedure is proposed for estimating the dynamic plastic response of a beam when struck by a heavy mass that travels at a low speed. The theoretical basis of this method is explained and the accuracy is examined by an error analysis. Finally, it is suggested that this quasi-static procedure could be used for estimating the dynamic plastic response of other structures that are struck by a heavy mass traveling at a low speed,  相似文献   

3.
ABSTRACT

The recursive Newton-Euler dynamic formulation is used to derive the equations of motion of a manipulator with harmonic drives. The derivation is general, in that the harmonic drive is viewed as a separate body that forms a kinematically closed chain with two contiguous links, leading to a comprehensive dynamic model. The harmonic drive is modeled as a flexible and rigid gear with a high gear reduction ratio. Under different modeling assumptions, the effects of gear flexibility and dynamic coupling are examined using a seven-degree-of-freedom manipulator.  相似文献   

4.
Yang  Lantao  Zeng  Qiang  Yang  Haishi  Wang  Liming  Long  Guorong  Ding  Xiaoxi  Shao  Yimin 《Nonlinear dynamics》2022,109(3):1591-1615

The effect of gear contact state change due to shaft misalignment on meshing stiffness is usually neglected in the traditional stiffness calculation model with misalignment error, the further influence mechanism of shaft misalignment on gear dynamic characteristics is also unclear. To address these shortcomings, a new mesh stiffness calculation model with misaligned gear considering the effects of tooth contact state is proposed by combining the improved loaded tooth contact analysis (LTCA) model. Then the effects of tooth contact state changes aroused by shaft misalignment on the meshing stiffness excitation are investigated. Moreover, a dynamic model of the misaligned gear system with 8 degrees of freedom (DOF) is established, and based on which the dynamic characteristics of the gear system are investigated and verified by experiment. The study results indicate that the proposed model can be used to evaluate the stiffness excitation and dynamic characteristics of the misaligned gear system with the tooth contact state taken into consideration. This study can provide a theoretical method for evaluating and identifying shaft misalignment errors.

  相似文献   

5.
An analytical study of the effect of hob offset on dynamic tooth strength of spur gears is presented. The study was limited to equal and opposite offset values applied to the pinion and gear to maintain the standard operating center distance. The analysis presented is performed using a new version of the NASA gear dynamics code DANST.

The operating speed of a transmission has a significant influence on the amount of hob offset required to equalize dynamic stresses in the pinion and gear. In the transmission studied, at low speeds, the optimum hob offset was found to fluctuate within a range. At higher speeds, the optimum value is constrained by the minimum allowed thickness at the tip of the pinion tooth. For gears that must operate over a range of speeds, an average offset value can be used. Spur gears designed with the procedure presented here can have significant improvements in load capacity.  相似文献   

6.
7.
Owing to the present of manufacturing errors, the dynamic floating characteristics of herringbone planetary gear train (HPGT) can be changed in comparison with the original ideal design. In this research, based on the actual structure of herringbone gears, taking into consideration manufacturing eccentric errors and tooth profile errors, bearing deformation, time-varying meshing stiffness, gyroscopic effect, and so on, a novel and generalized bending–torsional–axial coupled dynamic model of a herringbone planetary gear train is presented to investigate the dynamic floating performances applying the lumped-parameter approach. The model is capable of being employed for the vibration behavior analysis of the HPGT with different types of manufacturing errors and arbitrary number of planets. The variable step Runge–Kutta algorithm is utilized to compute the dynamic responses of the HPGT system. In combination with the proposed computational approach of the component floating displacement amount, the relationship among manufacturing errors, component floating displacements, and different floating forms is obtained, and the effects of manufacturing errors on the HPGT dynamic floating performances are discussed. Meanwhile, sun gear radial floating trajectories in two cases of sun gear float and non-float are compared and analyzed. Results indicate that the manufacturing error and component float prominently affect the dynamic floating characteristics in the HPGT system.  相似文献   

8.
A nonlinear, time-varying dynamic model for right-angle gear pair systems is formulated to analyze the existence of sub-harmonics and chaotic motions. This pure torsional gear pair system is characterized by its time-varying excitation, clearance, and asymmetric nonlinearities as well. The period-1 dynamic motions of the same system were obtained by solving the dimensionless equation of gear motion using an enhanced multi-term harmonic balance method (HBM) with a modified discrete Fourier transform process and the numerical continuation method presented in another paper by the authors. Here, the sub-harmonics and chaotic motions are studied using the same solution technique. The accuracy of the enhanced multi-term HBM is verified by comparing its results to the solutions obtained using the more computational intensive direct numerical integration method. Due to its inherent features, the enhanced multi-term HBM cannot predict the chaotic motions. However, the frequency ranges where chaotic motions exist can be predicted using the stability analysis of the HBM solutions. Parametric studies reveal that the decrease in drive load or the increase of kinematic transmission error (TE) can result in more complex gear dynamic motions. Finally, the frequency ranges for sub-harmonics and chaotic motions, as a function of TE and drive load, are obtained for an example case.  相似文献   

9.
Abstract

Here, investigation to explore the effect of generic payload and externally applied asymmetric load on the calculation of modal parameters and dynamic performance of a rotating flexible manipulator under prismatic motion has been established. We thus have developed a dynamic model of a rotating Cartesian manipulator with a payload whose center of gravity doesn’t coincide with the point of attachment, to determine the modal parameters i.e., natural frequency and corresponding mode-shape. These modal parameters are then illustrated graphically upon varying parameters like offset parameters (i.e., offset mass, offset inertia, offset length), mass and stiffness of rotary actuator, and amplitude and frequency of asymmetric load. An investigation into the nonlinear dynamics of the system accounting of geometric nonlinearity has been executed while obtained results have been validated numerically within the permissible error at the assorted critical points in frequency characteristic curves. Current research further investigates the influences of offset parameters, mass and stiffness of the actuator, frequency and amplitude of axial force on the steady state responses for the primary and sub-harmonic resonance conditions to reveal the built-in saddle-node and pitchfork bifurcation due to which the system losses its structural stability. This work enables an insight into the modal characteristics and nonlinear behavior of a rotating-Cartesian manipulator with a generic payload under asymmetric axial force and prismatic motion.  相似文献   

10.
A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.  相似文献   

11.
This work presents a wide number of results about the influence that variations in terms of operational and design parameters play on the dynamic behavior of external gear pumps. These results are obtained by using a non-linear lumped-parameter kineto-elastodynamic model developed and experimentally assessed with the aim of including all the important dynamic effects. On the one hand, the effects of variations in the operational parameters—namely output pressure, rotational speed and oil viscosity—are analysed; on the other hand, the effects of modifications of some design parameters are shown: clearances and relief groove dimension. The results in terms of gear eccentricity, pressure evolution, pressure forces, gear accelerations and variable forces exciting the pump casing enlighten the dynamic behavior of gear pumps and give useful indications for design improvements and vibration and noise reduction. As regards specifically gear accelerations as well as forces exciting the casing, they strongly increase with both output pressure and rotational speed, but variations in rotational speed in the operational range give lower effects. Conversely, the modifications of the clearances give negligible effects, while the relief groove dimension is very important: the larger the relief grooves are, the higher the gear accelerations and forces exciting the casing become.  相似文献   

12.
Liu  Siyuan  Zhu  Caichao  Song  Chaosheng  Fuentes-Aznar  Alfonso 《Meccanica》2021,56(11):2861-2875

The investigation of the influence of different errors of alignment on the mesh behavior of hypoid gears with low crossing shaft angle has been carried out. As a result, a simplified methodology of compensation of errors of alignment and correction of the contact pattern by controlled axial displacements to the pinion and wheel of the hypoid gear set has been proposed. The shaft angle error and the offset error mainly influence the position of the contact pattern in profile direction. The pinion and wheel axial position errors influence the position of contact pattern along the tooth trace direction and change the position slightly along the tooth profile direction. All the assembly errors increase the peak-to-peak value of transmission errors, except positive values of the pinion axial position error that allows decreasing the peak-to-peak transmission error slightly in an appropriate range. Finite element analysis has been performed to verify the compensating ability of the developed methodology.

  相似文献   

13.
Time-varying mesh stiffness is one of the main excitation sources of a gear system, and it is also considered as an important factor for the vibration and noise of gears. Thus, this excitation is usually taken as an input into the gear dynamic model to obtain the system dynamic responses. However, the mesh stiffness of a gear pair is actually nonlinear with respect to the dynamic mesh force (DMF) that fluctuates during the operation of gears. Therefore, the dynamic model of gears with the quasi-static mesh stiffness calculated under a constant load is not accurate sufficiently. In this paper, a dynamic model of spur gear is established with considering the effect of the force-dependent time-varying mesh stiffness, backlash and profile deviation. Due to the nonlinear relationship between the mesh stiffness and the load for each tooth pair, it needs first to determine the load sharing among tooth pairs and then calculate the overall mesh stiffness of the gear pair. As the mesh stiffness and DMF are related, the mesh stiffness is no longer directly taken into the gear dynamic model as an input, but is jointly solved with the numerical integration process using the gear dynamic model. Finally, the dynamic responses predicted from the established gear dynamic model are compared with the experimental results for validation and compared with the traditional models to reveal their differences. The results indicate that the established dynamic model of spur gear transmission has a wider application range than the traditional models.  相似文献   

14.
15.
In this paper, the nonlinear vibration characteristics of geared rotor bearing system and the interactions among gears, shafts, and plain journal bearings were studied. First, with the consideration of backlash, transmission error, time-varying mesh stiffness, and layout parameters, the dynamic model of geared rotor bearing system featuring confluence transmission was proposed. The nonlinear oil-film forces were computed with the Reynolds equation for finite-length journal bearings. Second, the responses of meshing vibration and bearing vibration were discussed. The numerical results revealed that the system exhibited a diverse range of periodic, sub-harmonic, and chaotic behaviors. Under different ranges of rolling frequency, the system got into chaos state through different roads. Moreover, in lower frequency, meshing vibration showed coexist of different periodic motions. Lastly, couplings of nonlinear oil-film force and nonlinear gear mesh force were discussed through a range of rolling frequencies. Gear-bearing dynamic interactions were demonstrated through the analysis of dynamic gear loads and dynamic bearing loads, and the coupling effect behaved different when rolling frequency changed.  相似文献   

16.
This article presents an idea to remove the inequality in maximum fillet stresses developed between pinion and gear of a step up gear drive. This uniform fillet strength of the gear drive can be achieved by using nonstandard pinion and gear with appropriate addendum modifications generated by nonstandard basic racks of respective tooth thickness not equal to 0.5πm at the pitch circle. The influence of gear parameters such as gear ratio, pressure angle, addendum factor, pinion teeth number, and addendum modifications on the maximum fillet stress on the nonstandard pinion and gears of different tooth thickness has been analyzed through finite element method and finally the optimum value of rack tooth thickness coefficients (k pc and k gc ) are suggested for the given gear drive (defined by i) that improves the fillet capacity in bending. This study has been extended for various drives like S std , S o , S +, and S ? drives.  相似文献   

17.
A kind simple postprocess procedure for classical Galerkin method for steady Navier-Stokes equations with stream function form was presented in this paper. The main ideal was to construct an approximate interactive rule between lower frequency components and higher frequency components by using the conception of Approximate Inertial Manifold (AIM) and a kind of new decomposition of the true solution. It is demonstrated in this paper that this kind of postprocess Galerkin method could derive a higher accuracy solution with lower computing efforts. Communicated by Zhang Hongqing Foundation item: the National Natural Science Foundation of China (19671067) Biography: Hou Yanren(1970-)  相似文献   

18.
Mathew  M.  Wisner  B.  Ridwan  S.  McCarthy  M.  Bartoli  I.  Kontsos  A. 《Experimental Mechanics》2020,60(8):1103-1117
Background

Digital Image Correlation (DIC) is a length scale independent surface pattern matching and tracking algorithm capable of providing full field deformation measurements. The confident registration of this pattern within the imaging system becomes key to the derived results. Practically, conventional speckling methods use non-reliable, non-repeatable patterning methodologies including spray paints and air brushing leading to increased systematic and random errors based on the user’s experience.

Objective

A methodology to develop a speckle pattern tailored to the imaging and experimental conditions of the given system is developed in this paper.

Methods

In this context, a novel bio-inspired speckle pattern development technique is introduced, leveraging spatial imaging parameters in addition to frequency characteristics of speckle patterns, enhancing the results obtained through DIC. This novel technique leverages gradient parameters in the frequency spectrum obtained from patterns fabricated using a bio-templating manufacturing technique.

Results

The analysis presented shows that optimized gradient features alongside tailored spatial characteristics reduce errors while increasing the usefulness of DIC results across the entire region of interest. With this new approach, gradient information is derived from the bio-templated pattern, extracted, optimized and then convolved with spatial properties of a numerically generated 2D point clouds which can then be transferred onto actual specimens. Numerical error analysis shows that the optimized patterns result in significant reduction in root mean square error compared to conventional speckling methods.

Conclusions

Physical experiments show the scalability of this optimized pattern to allow for varying working distances while consistently maintaining a lower error threshold compared to conventional speckling techniques.

  相似文献   

19.
ABSTRACT

A numerical procedure is used to examine the influence of transverse shear forces in the yield criterion and rotatory inertia on the dynamic plastic response of beams. Various results are presented for a long beam impacted by a mass and a simply supported beam loaded impulsively, both of which are made from a rigid perfectly plastic material with yielding controlled by the Ilyushin-Shapiro ield criterion.

Transverse shear effects lead to a dramatic reduction in the slopes of the deformed profiles for both beam problems. Moreover, the slope of the deformed profile underneath the striker in the impact problem is quite sensitive to the actual shape of a yield curve, while the maximum transverse displacement is less sensitive. The retention of rotatory inertia in the basic equations leads to further reductions up to 17 and 10% in the slopes and maximum transverse displacements, respectively.  相似文献   

20.
《力学快报》2022,12(2):100324
The circumferential vibration of a gear pair is a parametric excitation caused by nonlinear tooth stiffness, which fluctuates with meshing. In addition, the vibration characteristics of the gear pair become complicated owing to the tooth profile error and backlash. It is considered that the circumferential vibration of the gear pair is affected by the torsional vibration of the shafts. It is important to understand quantitatively the vibration characteristics of the gear system considering the shafts. Therefore, the purpose of this research was to clarify the nonlinear vibration characteristics of a gear pair considering the influence of the shafts using theoretical methods. To achieve this objective, calculations were performed using equations of motion in which the circumferential vibration of the gear pair and the torsional vibration of the shafts were coupled. The nonlinear tooth stiffness was represented by a sine wave. The influence of tooth separation was considered by defining a nonlinear function using backlash and the tooth profile error. For the numerical calculations, both stable and unstable periodic solutions were obtained by using the shooting method. The effect of the shafts on the gear system vibration were clarified by comparing the results in the cases in which the shaft was not considered, one shaft was considered, and both shafts were considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号