首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   28篇
  国内免费   9篇
化学   618篇
晶体学   9篇
力学   21篇
数学   130篇
物理学   103篇
  2023年   3篇
  2022年   3篇
  2021年   19篇
  2020年   21篇
  2019年   16篇
  2018年   17篇
  2017年   16篇
  2016年   24篇
  2015年   18篇
  2014年   28篇
  2013年   51篇
  2012年   72篇
  2011年   70篇
  2010年   47篇
  2009年   26篇
  2008年   46篇
  2007年   36篇
  2006年   44篇
  2005年   54篇
  2004年   35篇
  2003年   47篇
  2002年   19篇
  2001年   13篇
  2000年   9篇
  1999年   7篇
  1998年   4篇
  1997年   7篇
  1996年   11篇
  1995年   9篇
  1994年   10篇
  1993年   5篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   10篇
  1982年   9篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1975年   2篇
  1974年   2篇
  1972年   4篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
排序方式: 共有881条查询结果,搜索用时 15 毫秒
1.
Janus gold nanostar–mesoporous silica nanoparticle ( AuNSt–MSNP ) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule ( 5 ), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-β-cyclodextrin supramolecular gatekeepers ( N 1 ). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.  相似文献   
2.
Group 4 complexes 1 – 3 [ 1 = (t‐BuOS)2Ti(O‐i‐Pr)2; 2 = (t‐BuOS)2Zr(O‐t‐Bu)2; 3 = (t‐BuOS)2Hf(O‐t‐Bu)2] supported by two phenolate bidentate ligands (t‐BuOS‐H = 4,6‐di‐tert‐butyl‐2‐phenylsulfanylphenol) promote the well‐controlled ring opening polymerization of rac‐β‐butyrolactone. In presence of isopropanol, low dispersities and molecular weights proportional to the equivalents of isopropanol are achieved. Moreover, the zirconium complex is effective in the copolymerization of rac‐β‐butyrolactone with rac‐lactide. The 13 C nuclear magnetic resonance analysis revealed that the obtained copolymers have a tapered diblock microstructure consisting of an initial block composed of lactide sequences and a terminal block composed of butyrolactone sequences. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3132–3139  相似文献   
3.
A new chromium(III) complex, bearing a bis-thioether-diphenolate [OSSO]-type ligand, was found to be an efficient catalyst in the copolymerization of CO2 and epoxides to achieve poly(propylene carbonate), poly(cyclohexene carbonate), poly(hexene carbonate) and poly(styrene carbonate), as well as poly(propylene carbonate)(cyclohexene carbonate) and poly(propylene carbonate)(hexene carbonate) terpolymers.  相似文献   
4.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. In the last years, navitoclax has emerged as a possible treatment for TNBC. Nevertheless, rapid navitoclax resistance onset has been observed thorough Mcl-1 overexpression. As a strategy to overcome Mcl-1-mediated resistance, herein we present a controlled drug co-delivery system based on mesoporous silica nanoparticles (MSNs) targeted to TNBC cells. The nanocarrier is loaded with navitoclax and the Mcl-1 inhibitor S63845 and capped with a MUC1-targeting aptamer ( apMUC1-MSNs(Nav/S63845) ). The apMUC1-capped nanoparticles effectively target TNBC cell lines and successfully induce apoptosis, overcoming navitoclax resistance. Moreover, navitoclax encapsulation protects platelets against apoptosis. These results point apMUC1-gated MSNs as suitable BH3 mimetics nanocarriers in the targeted treatment of MUC1-expressing TNBC.  相似文献   
5.
Herein, we describe the synthesis of molecular scaffolds consisting of medium‐sized fused heterocycles using amino acids, which are some of the most useful building blocks used by nature as well as chemists to create structural diversity. The acyclic precursors were assembled by using traditional Merrifield solid‐phase peptide synthesis, and cyclization was carried out through acid‐mediated tandem endocyclic N‐acyliminium ion formation, followed by nucleophilic addition with internal nucleophiles. The synthesis of molecular scaffolds consisting of seven‐, eight‐, and nine‐membered rings proceeded with full stereocontrol of the newly generated stereogenic center in most cases.  相似文献   
6.
Treatment of bis(cyanamide) [M(N≡CNEt2)2L4](BPh4)2 and bis(cyanoguanidine) [M{N≡CN(H)C(NH2)=NH}2L4](BPh4)2 complexes [M = Fe, Ru, Os; L = P(OEt)3] with an excess of amine RNH2 (R = nPr, iPr) affords mixed‐ligand complexes with cyanamide and amine [M(NH2R)(N≡CNEt2)L4](BPh4)2 ( 1a – 5a ) and [M(NH2R){N≡CN(H)C(NH2)=NH}L4](BPh4)2 ( 1b , 2b ). The complexes were characterized by spectroscopy and X‐ray crystal structure determination of [M(NH2iPr)(N≡CNEt2){P(OEt)3}4](BPh4)2 [M = Ru ( 3a ), Os ( 5a )].  相似文献   
7.
New fused pyrazolo‐1,4‐naphthoquinones were prepared from the reaction of hydrazines with 6‐(4‐methyl‐3‐pentenyl)‐1,4‐naphthoquinone. The reaction was extended to hydroxylamine to afford the corresponding isoxazolo‐1,4‐napthoquinone compound.  相似文献   
8.
In this work, the suitability of a new polymer family has been investigated as capillary coatings for the analysis of peptides and basic proteins by CE. This polymer family has been designed to minimize or completely prevent protein–capillary wall interactions and to modify the EOF. These coating materials are linear polymeric chains bearing as side cationizable moiety a dentronic triamine derived from N,N,N’,N’‐tetraethyldiethylenetriamine (TEDETA), which is linked to the backbone through a spacer (unit labeled as TEDETAMA). Four different polymers have been prepared and evaluated: a homopolymer which comprised only of those cationizable repetitive units of TEDETAMA, and three copolymers that randomly incorporate TEDETAMA together with neutral hydrosoluble units of N‐(2‐hydroxypropyl) methacrylamide (HPMA) at different molar percentages (25:75, 50:50 and 75:25). It has been demonstrated that the composition of the copolymers influences the EOF and therefore the separation of the investigated biopolymers. Among the novel polymers studied, poly‐(TEDETAMA‐co‐HPMA) 50:50 copolymer was successfully applied as coating material of the inner capillary surface in CE‐UV and CE‐MS, providing EOF reversing together with fast and efficient baseline separation of peptides and basic proteins. Finally, the feasibility of the polymer‐coated capillary was shown through the analysis of lysozyme in a cheese sample.  相似文献   
9.
The synthesis of hybrid platinum materials is fundamental to enable alkaline water electrolysis for cost-effective H2 generation. In this work, we have used a galvanostatic method to co-deposit PtNi films onto polycrystalline gold. The surface concentrations of Ni (ΓNi) and Pt (ΓPt) were calculated from electrochemical measurements; the ΓPtNi ratio and electrocatalytic activity of these materials towards hydrogen evolution reaction (HER) in 1 M KOH show a strong dependence on the current density pulse applied during the electrodeposition. Analysis of the Tafel parameters hints that, on these deposits, HER proceeds through a Volmer-Heyrovsky mechanism. The galvanostatically deposited PtNi layers present a high current output per Pt gram, 3199 A gPt−1, which is significantly larger compared to other PtNi-based materials obtained by more extended and more complex synthesis methods.  相似文献   
10.
In this paper, we introduce the notion of slant submanifolds of a para-Hermitian manifold. We study their first properties and present a whole gallery of examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号