首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用标准溶液加入法,往高纯氧化铋中加入混合标液,烘干并研磨均匀,制备了5个高纯氧化铋的控制样品。在挑取适量的粉末样品压在高纯铟薄片上,建立了辉光放电质谱法(GDMS)研究高纯氧化铋中的Mg、Al、Ca等19个元素相对灵敏度因子的方法。实验考察了放电参数和制样面积对基体信号强度和稳定性的影响,优化后的辉光放电电流为1.8 mA,放电电压为950 V,压在铟薄片上的高纯氧化铋直径约为6~8 mm。通过选择合适的同位素,在4000的中分辨率下测定即可消除质谱干扰。为了验证加标的准确性,采用电感耦合等离子体质谱仪(ICP-MS)对控制样品进行测定,所有元素的回收率都在80%以上。采用GDMS法测定5个控制样品并结合ICP-MS的测定值建立工作曲线,大部分元素的线性均达到0.995以上;除Al、Ga、Sb外,大部分元素的校准相对灵敏度因子(calRSF)和仪器自带的标准相对灵敏度因子(stdRSF)的比值都在1/2~2之间,说明GDMS的半定量分析不会有数量级的差别。但对于某些需要准确测定纯度的定量分析,则必须采用基体相匹配的RSF值进行校正。  相似文献   

2.
辉光放电质谱(GDMS)作为高纯金属和半导体材料分析的强有力工具在国内已得到了大量应用,该文简要介绍了GDMS的基本原理和国内外应用现状,对仪器测量条件的选择、测量重复性进行了详细研究,对于含量在1 mg/kg左右的杂质,测量的重复性将产生约1%~5%的不确定度;对不同金属基体的系列标准物质进行对比研究,发现对于基体相同的样品,杂质元素在较宽的浓度范围内可以使用同样的校正系数进行校正,大部分元素的线性相关系数达到0.999以上,但对于不同基体的样品,测量中仍存在明显的基体效应,一些元素,尤其是轻质量数元素的相对灵敏度因子(RSF)设定值存在较大的偏差,并不适合定量分析,但绝大部分不超过2倍误差,可以满足半定量分析的要求。通过对GDMS定量分析中关键因素的研究,认为相对灵敏度因子的校正是GDMS测量结果可溯源性的关键。  相似文献   

3.
取高纯GeO_2粉末5.00g(颗粒度小于30μm)5份,其中一份作为空白,其余4份中依次加入Li、Be、Mg、Al、Ti、V、Cr、Fe、Ni、Co、Cu、Zn、Sn、Sb、Tl、Pb等16种元素的标准溶液,使其浓度梯度为0,0.4,1.0,2.0,5.0μg·g~(-1),于烘箱中100℃烘干。充分研磨混匀后制得GeO_2粉末中含16种杂质元素的控制样品。取高纯铟按方法规定压制成直径约为15mm的In薄片。取5片铟薄片,取适量上述5个GeO_2控制样品分别置于铟薄片上,盖上数层称量纸后用手动压紧压实,使铟薄片上的控制样品的直径约为4mm,并分别进行直流辉光放电质谱法(dc-GD-MS)测定。选择放电电流为1.8mA,放电电压为850V,采用电感耦合等离子体质谱法(ICP-MS)测定控制样品中各杂质元素的含量,并将这些测定值作为标准值。将ICP-MS测定所得待测元素和基体元素的离子束强度比值为横坐标,以与其对应的信号强度为纵坐标绘制校准曲线,曲线的斜率即为各元素的相对灵敏度因子(RSF)值。所得16种元素的校准RSF(calRSF)值和仪器自带的标准RSF(stdRSF)值之间存在显著的差异,其比值大都在2~3之间。由此可见制备的一组GeO_2粉末控制样品不仅建立了各元素的工作曲线,而且获得了与基体相匹配的RSF值,解决了用GD-MS测定高纯GeO_2中16种杂质元素的问题。  相似文献   

4.
采用辉光放电质谱法(GDMS)对高纯铟中铁、铜、铅、锌、铊、镉、锡等14种元素进行了测定,对仪器工作参数进行了优化,对预溅射过程时间的确定和质谱干扰的排除进行了讨论,结果表明,GDMS是目前具有足够灵敏度对高纯导电材料进行直接分析的有效手段。  相似文献   

5.
准确测定并控制材料中杂质元素含量是发挥高纯材料性能不可或缺的环节。辉光放电质谱法(GDMS)是准确、快速、高灵敏分析高纯材料中痕量及超痕量硫的理想方法。对GDMS分析高纯铜和镍基高温合金中痕量硫的质谱干扰进行了讨论,优化了放电电流和放电电压,采用多种标准物质对硫的相对灵敏度因子(RSF)进行了校准和验证,并与二次离子质谱法(SIMS)进行分析结果比对,验证了GDMS定量分析结果的准确性和可靠性。  相似文献   

6.
建立了直流辉光放电质谱(dc-GDMS)测定三氧化钼中痕量元素含量的方法,优化了辉光放电参数,考察了三氧化钼制样面积对放电稳定性和灵敏度的影响。在优化条件下,测定2个三氧化钼标准样品BS ZZ42001和BS ZZ42003的相对灵敏度因子RSF1和RSF2,计算得到平均相对灵敏度因子RSFA,对三氧化钼标准样品BS ZZ42002的测定结果进行校正,与BS ZZ42002的标准值比较,除Ti和Cd外,校正后得到的各元素测定值相对误差在±9.5%以内。对未知的三氧化钼样品测定结果进行校正,并与电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)结果对比。t检验结果表明,RSFA校正值与ICP-AES/ICP-MS法测定值无显著性差异。该方法可为三氧化钼中多种痕量元素的快速定量分析提供参考。  相似文献   

7.
建立了利用辉光放电质谱法(GDMS)对高纯铝样品进行定量分析的方法。讨论了仪器工作参数、预溅射时间和质谱干扰的影响。采用高纯铝标样得出相对灵敏度因子(RSF)对实验结果进行校正,同时利用另一高纯铝标样HP1000验证实验的准确性,测定值与标准值的相对误差在-53.2%~16.6%之间,RSD在1.9%~11%之间,能够满足高纯铝中杂质的定量分析要求。  相似文献   

8.
采用辉光放电质谱法(GDMS)测定了纯锡中24种杂质元素,分析方法为无标定量分析。分析前纯锡样品须依次用乙醇、水及乙醇冲洗以除去表面的灰尘颗粒,凉干后用于分析。本工作对辉光放电过程中的三项关键因素,即辉光放电电压、放电电流及放电气流三者在辉光放电溅射/电离时的相互关系及其对总离子流强度的影响进行了试验和讨论,并确定了仪器在最佳状态时辉光放电的优化条件为:放电电压590V,放电电流30mA,放电气流450mL·min~(-1)。为排除各元素测定中质谱(MS)干扰的影响,选择了在不同的分辨模式(中/高)下用相对丰度较高、干扰较少的质量数进行分析。所测定元素测定结果的相对标准偏差(n=5)均小于15%。各元素的检出限(3s)为0.003~0.174μg·g~(-1)之间。本方法所得测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)或电感耦合等离子体质谱法(ICP-MS)的测定结果基本一致。经试验,通过更换GDMS的阳极帽、导流管、采样锥和透镜等4种耗材,可完全消除锡的记忆效应。  相似文献   

9.
采用辉光放电质谱法(GDMS)分析超高纯铝样品(含铝量≥99.9995%)中B,Mg,Si,P,Cl,Ti等44种主要杂质元素,并且与电感耦合等离子体质谱法(ICPM S)进行对比,主要杂质元素含量检测结果一致。本工作对质谱干扰的排除和预溅射过程时间的确定进行了讨论,采用高纯铝标样对高纯铝中26种主要元素相对灵敏度因子(RSF)进行校正和验证,并考察了检测结果的准确性和精密度。结果表明,GDMS是超高纯铝样品直接测定的最有效手段之一。  相似文献   

10.
采用辉光放电质谱法(GDMS)分析超高纯铝样品(含铝量≥99.9995%)中B,Mg,Si,P,Cl,Ti等44种主要杂质元素,并且与电感耦合等离子体质谱法(ICPM S)进行对比,主要杂质元素含量检测结果一致。本工作对质谱干扰的排除和预溅射过程时间的确定进行了讨论,采用高纯铝标样对高纯铝中26种主要元素相对灵敏度因子(RSF)进行校正和验证,并考察了检测结果的准确性和精密度。结果表明,GDMS是超高纯铝样品直接测定的最有效手段之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号