首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bastian Helldörfer  Günther Kuhn 《PAMM》2007,7(1):4030021-4030022
A boundary element based finite macro element for the simulation of 3D crack propagation in the framework of linear elastic fracture mechanics is presented. While the major part of the numerical model is discretized with finite elements, a small domain containing the crack is meshed with boundary elements. By means of the Symmetric Galerkin BEM a stiffness formulation for the cracked BE domain is obtained which enables a direct FEM/BEM coupling. All necessary operations for the crack propagation are carried out within this boundary element based finite macro element and exploit the potential of the boundary integral formulation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A computational method for arbitrary crack motion through a finite element mesh, termed as the generalized cohesive element technique, is presented. In this method, an element with an internal discontinuity is replaced by two superimposed elements with a combination of original and imaginary nodes. Conventional cohesive zone modeling, limited to crack propagation along the edges of the elements, is extended to incorporate the intra-element mixed-mode crack propagation. Proposed numerical technique has been shown to be quite accurate, robust and mesh insensitive provided the cohesive zone ahead of the crack tip is resolved adequately. A series of numerical examples is presented to demonstrate the validity and applicability of the proposed method.  相似文献   

3.
Ercan Gürses  Christian Miehe 《PAMM》2007,7(1):4030019-4030020
A variational formulation of quasi-static brittle fracture is considered and a new finite-element-based computational framework is developed for propagation of cracks in three-dimensional bodies. We outline a consistent thermodynamical framework for crack propagation in elastic solids and show that the crack propagation direction associated with the classical Griffith criterion is identified by the material configurational force which maximizes the local dissipation at the crack front. The evolving crack discontinuity is realized by the doubling of critical nodes and triangular interface facets of the tetrahedral mesh. The crucial step for the success of the procedure is its embedding into an r-adaptive crack-facet reorientation procedure based on configurational-force-based indicators in conjunction with crack front constraints. We further propose a staggered algorithm which minimizes the stored energy at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive definite subproblems with successively decreasing overall stiffness, providing a very robust algorithmic setting in the postcritical range. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The presented procedure for cohesive crack propagation is based on an adaptive finite element (FE) implementation, which enables the introduction of cohesive surfaces in dependence on the current crack state. In contrast to already existing formulations, the focus of the present model lies on failure processes that can be described at quasi-static conditions within an implicit framework. Furthermore, an extension for mesh independent crack propagation in terms of an additional mesh adaptive formulation is presented. By the evaluation of the failure criterion considering the preferred crack direction, a new crack tip coordinate is computed and the discretization is accordingly adjusted. The remaining mesh is modified for the new boundary representation. The application of the proposed method is shown by the numerical investigation of a concrete fracture specimen from an experimental research project. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In the context of a strong discontinuity approach, we propose a finite element formulation with an embedded displacement discontinuity. The basic assumption of the proposed approach is the additive split of the total displacement field in a continuous and a discontinuous part. An arbitrary crack splits the linear triangular finite element into two parts, namely a triangular and a quadrilateral part. The discontinuous part of the displacement field in the quadrilateral portion is approximated using linear shape functions. For these purposes, the quadrilateral portion is divided into two triangular parts which is in this way similar to the approach proposed in [5]. In contrast, the discretisation is different compared to formulations proposed in [1] and [3], where the discontinuous part of the displacement field is approximated using bilinear shape functions. The basic theory of the underlying finite element formulation and a cohesive interface model to simulate brittle fracture are presented. By means of representative numerical examples differences and similarities of the present formulation and the formulations proposed in [1] and [3] are highlighted. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Radan Radulovic  Jörn Mosler 《PAMM》2010,10(1):131-132
A finite element formulation within the framework of the Strong Discontinuity Approach suitable for the simulation of crack growth is presented. The formulation allows for intersecting discontinuities and similarly to classical interface elements, the cracks are introduced parallel to the element facets. However and in contrast to interface elements, the discontinuities are directly embedded in finite elements, based on the Enhanced Assumed Strain concept. It is shown that a realistic prediction of the mechanical response requires the consideration of more than one crack within each finite element. The proposed formulation is suitable to overcome locking effects and it automatically fulfills crack path continuity. The approach is strictly local yielding an efficient numerical formulation. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In phase field fracture models cracks are indicated by the value of a scalar field variable which interpolates smoothly between broken and undamaged material. The evolution equation for this crack field is coupled to the mechanical field equations in order to model the mutual interaction between the crack evolution and mechanical quantities. In finite element simulations of crack growth at comparatively slow loading velocities, a quasi-static phase field model yields reasonable results. However, the simulation of fast loading or the nucleation of new cracks challenges the limits of such a formulation. Here, the quasi-static phase field model predicts brutal crack extension with an artificially high crack speed. In this work, we analyze to which extend a dynamic formulation of the mechanical part of the phase field model can overcome this paradox created by the quasi-static formulation. In finite element simulations, the impact of the dynamic effects is studied, and differences between the crack propagation behavior of the quasi-static model and the dynamic formulation are highlighted. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We introduce a consistent variational framework for inelasticity at finite strains, yielding dual balances in physical and material space as the Euler equations. The formulation is employed for the simultaneous usage of configurational forces as both driving forces for crack propagation as well as h-adaptive mesh refinement. The theoretical basis builds upon a global balance of internal and external power, where the mechanical response is exclusively governed by two scalar functions, the free energy function and a dissipation potential. The resulting variational structure is exploited in the context of fracture mechanics and yields evolution equations for internal variables. In the discrete setting, we present a geometry model fully separated from the finite element mesh structure that represents structural changes of the material configuration due to crack propagation. Advanced meshing algorithms provide an optimal discretization at the crack tip. Local and global criteria are obtained via error estimators based on configurational forces being interpreted as indicators of an energetic misfit due to an insufficient discretization. The numerical handling is decomposed into a staggered algorithm scheme for the dual set of equilibrium equations in material and physical space and efficient mesh generation tools. Exemplary numerical examples are considered to illustrate the method and to underline the effects of inelastic material behaviour in the presented context. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Ronny Behnke  Michael Kaliske 《PAMM》2015,15(1):121-122
Recently, a scaled boundary finite element (SBFE) formulation for geometrically and physically nonlinear materials has been developed using the scaled boundary finite element method (SBFEM). The SBFE formulation has been employed to describe plane stress problems of notched and unnotched hyperelastic elastomer specimens. In this contribution, the derived SBFE formulation is extended to nonlinear time- and temperature-dependent material behavior. Subsequently, the SBFE formulation is incorporated into a crack propagation scheme to model crack propagation in cyclically loaded elastomer specimens of the so-called tear fatigue analyzer (TFA). (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Service life of cyclically loaded components is often determined by the propagation of short fatigue cracks, which is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of such stage I-cracks is presented. The crack is discretised by dislocation discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A generalization of the CABARET finite difference scheme is proposed for linearized one-dimensional Euler equations based on the characteristic decomposition into local Riemann invariants. The new method is compared with several central finite difference schemes that are widely used in computational aeroacoustics. Numerical results for the propagation of an acoustic wave in a homogeneous field and the refraction of this wave through a contact discontinuity obtained on a strongly nonuniform grid are presented.  相似文献   

12.
In computational structural analyses, strong discontinuities, such as propagating cracks in concrete structures, joints in rocks or shear bands in soft soils, the highly accelerated moisture transport in the opening discontinuities has to be taken into account. The paper is concerned with an Extended Finite Element model for the numerical representation of crack propagation in partially saturated porous materials. Based on an extended variational formulation for the simulation of moisture transport in cracks, enhanced approximations of the displacement field and the moisture flux across the discontinuity are adopted. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.  相似文献   

14.
In this paper, a numerical approach for analyzing interacting multiple cracks in infinite linear elastic media is presented. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks, the original problem is divided into a homogeneous problem (the one without cracks) subjected to remote loads and a multiple crack problem in an unloaded body with applied tractions on the crack surfaces. Thus, the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements proposed recently by the author. Test examples are given to illustrate that the numerical approach is very accurate for analyzing interacting multiple cracks in an infinite linear elastic media under remote uniform stresses. In addition, the displacement discontinuity method with crack-tip elements is used to analyze a multiple crack problem in a finite plate. It is found that the boundary element method is also very accurate for investigating interacting multiple cracks in a finite plate. Specially, a generalization of Bueckner’s principle and the displacement discontinuity method with crack-tip elements are used to analyze multiple circular arc crack problems in infinite plate in tension (including: Two Collinear Circular Arc Cracks, Three Collinear Circular Arc Cracks, Two Parallel Circular Arc Cracks, Three Parallel Circular Arc Cracks and Two Circular Arc Cracks) in a plane elasticity plate. Many results are given.  相似文献   

15.
Arun Raina  Christian Linder 《PAMM》2011,11(1):171-172
In the current work, the physical phenomena of dynamic fracture of brittle materials involving crack growth, acceleration and consequent branching is simulated. The numerical modeling is based on the approach where the failure in the form of cracks or shear bands is modeled by a jump in the displacement field, the so called ‘strong discontinuity’. The finite element method is employed with this strong discontinuity approach where each finite element is capable of developing a strong discontinuity locally embedded into it. The focus in this work is on branching phenomena which is modeled by an adaptive refinement method by solving a new sub-boundary value problem represented by a finite element at the growing crack tip. The sub-boundary value problem is subjected to a certain kinematic constraint on the boundary in the form of a linear deformation constraint. An accurate resolution of the state of material at the branching crack tip is achieved which results in realistic dynamic fracture simulations. A comparison of resulting numerical simulations is provided with the experiment of dynamic fracture from the literature. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
S. Hédan  V. Valle  M. Cottron  F. Brémand 《PAMM》2007,7(1):3050007-3050008
The fundamental aim of this study is the determination zone of the 3D effects and the transient one at the vicinity of the crack tip during a crack propagation in brittle materials ( PMMA ) using an optical method (Michelson interferometer). With the obtained interferograms, we can extract the phase (thus the relief) by using a new numerical approach based on the principle of images correlation between real fringes and virtual fringes. Different dynamic tests are realized by a plate loaded in mode I under a constant loading. We compare the obtained data with the two-dimensional theory of Westergaard (plane stress hypothesis) [1]. With the divergence is established, we propose a new 3D formulation, based on a formulation employed for static crack, which takes into account 3D and transient effects. For the static cracks, the 3D effects relate to a presence of the state of three-dimensional stresses. However in dynamics, the transient effects appear and are related to the crack propagation velocity. The 3D effects and transient effects lead to results equivalent to experimental ones in terms of displacement but are completely different to results given by the two-dimensional theory near the crack tip. It is possible to quantify the zone when the plane stress hypothesis is not valid according to the crack propagation speed V. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
P. Dumstorff  G. Meschke 《PAMM》2003,2(1):226-227
In this paper a finite element model for the analysis of brittle materials in the post cracking regime is presented. The model allows the representation of failure zones several times smaller than the structure itself using relatively coarse finite element meshes. The formulation is based on the partition of unity method. Discontinuous shape functions are used to enrich the continuous approximation of the displacement field where a crack has opened [2]. The magnitude of the displacement jump is determined by extra degrees of freedom at existing nodes. The crack path is completely independent of the structure of the mesh and is continuous across element boundaries. To model inelastic deformations around the crack tip a cohesive crack model is used. A representative numerical example illustrates the performance of the proposed model.  相似文献   

19.
This work focuses on the development of new finite elements which can capture strong discontinuities in three-dimensional failure problems. The displacement jumps in the solid are approximated by a linear interpolation obtained by enforcing a new class of enhanced separation modes to exactly be satisfied by the formulation. Efforts are also put towards the development of a proper crack propagation tracking algorithm needed for the complicated crack surfaces appearing in realistic 3D failure simulations, based on a combination of the global tracking algorithm and the marching cubes algorithm. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The extension of the finite element method to take discrete fracture and failure modes into account is a current field of research. In recent times, first results in terms of cohesive element formulations have been introduced into commercial applications. Such element formulations are able to cover the discrete behaviour of interfaces between different materials or the mechanical processes of thin layers. These approaches are not suitable for simulations with unknown crack paths in homogeneous materials, due to the initial elastic phase of the material formulation and the necessity to define potential crack paths a priori. The presented strategy starts with an unextended model and modifies the structure during the computations in terms of an adaptive procedure. The idea is to generate additional elements, based on the cohesive element formulation, to approximate arbitrary crack paths. For this purpose, a failure criterion is introduced. For nodes where the limiting value is reached, cohesive elements are introduced between the volume element boundaries of accordingly facets and corresponding nodes are duplicated. Necessary modifications for this application on system level as well as the element and the material formulation are introduced. By means of some numerical examples, the functionality of the presented procedure is demonstrated. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号