首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study showed that greige cotton nonwoven fabric can effectively be flame retardant by applying the phosphorus of diammonium phosphate (DAP) as low as 0.8 wt% with the addition of urea. At such a low content of phosphorus, the char length and limiting oxygen index (LOI) were continuously decreased and increased, respectively, as the concentration of urea increased. The effect of urea additive on the thermal decomposition of flame retardant greige cotton nonwoven fabric was investigated by thermogravimetry, ATR-FTIR, XRD, 1H → 13C CP/MAS NMR, and SEM. The results indicated that, upon heating, urea not only facilitated the phosphorylation reaction of DAP but also introduced carbamate groups into cellulose to decrease the degree of crystallinity prior to the decomposition of the crystalline cellulose. Compared with DAP treatment alone, the addition of urea accelerated the decomposition of glycosyl units, which resulted in a slight increase of weight loss and decrease of char yield. The char morphology observed after LOI tests indicates that urea released nonflammable gases, which blew the carboneous char layer to protect the underlying substrate.  相似文献   

2.
The effects of three nitrogen additives (urea, guanidine carbonate, and melamine formaldehyde) on the flame retardant action of cotton cellulose treated with tributyl phosphate (TBP) were investigated in this research. The limiting oxygen index (LOI) of treated cotton cellulose clearly revealed the synergistic interactions of TBP and nitrogen compounds. The Kissinger method was used to evaluate the kinetics of thermal decomposition on treated cellulose. The results show that adding nitrogen additives increases the activation energy at a higher degree of degradation, thus indicating better thermal stability at higher temperatures. Scanning electron microscope pictures of chars formed after a LOI test show the formation of protective polymeric coatings on char surfaces. Evaluating char surfaces using attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggests that these coatings are composed of species containing phosphorus-nitrogen-oxygen. Possible chemical interactions of phosphorus and nitrogen compounds during the burning process and the formation of a protective coating could be the reason for the observed synergism. Potential reaction pathways contributing to the formation of this protective polymeric coating have also been proposed.  相似文献   

3.
<正>The effect of ammonium sulfamate(AS) content on the flame retardancy of polyamide 6(PA6) was studied.It is found that the limiting oxygen index(LOI) of PA6 increases with the increase of AS content and the flame retardancy of PA6 is significantly improved.The morphology of the residues after combustion was examined by means of scanning electron microscopy(SEM).SEM results show that AS facilitates the formation of the intumescent char layer with honeycomb-like structure,which inhibits the transfer of heat and mass,and thus improves the flame retardancy of PA6.The thermal degradation of AS flame retarded PA6 was studied by thermogravimetric analysis(TGA).The Kissinger method was applied to estimate the activation energy(E_a) of the degradation.The activation energy of the thermal degradation of PA6 decreases by adding AS,indicating that AS can promote the degradation of PA6.  相似文献   

4.
This research explores the structural effect of phosphoramidates as flame retardants (FRs) for cotton cellulose. Flame retardant (FR) and thermal decomposition actions of phosphate such as triethyl phosphate (TEP), primary phosphoramidate such as diethyl phosphoramidate (DEPA) and secondary phosphoramidates such as phosphoramidic acid, N(2-hydroxy ethyl) diethylester (PAHEDE), diethyl ethyl phosphoramidate (DEEP) and diethyl 2-methoxyethylphosphoramidate (DEMEP) on cotton cellulose were investigated. Limiting oxygen index (LOI) of treated cotton cellulose showed that all phosphoramidates exhibited better flame retardant properties as compared to TEP. Secondary phosphoramidate PAHEDE had better flame retardant properties as compared to DEMEP and DEEP which indicate that flame retardancy of secondary phosphoramidates is structure related. Test performed on pyrolysis combustion flow calorimeter (PCFC) for treated cellulose showed higher reduction in heat of combustion for efficient FRs (PAHEDE, DEPA). Evolved gas analysis using thermogravimetric analyzer-Fourier transform infrared spectroscopy (TGA-FTIR) and thermogravimetric analyzer-mass spectrometer (TGA-MS) of treated cellulose showed that phosphoramidates could catalyze the dehydration and char formation of cellulose at a lower temperature. The enhanced flame retardant action of phosphoramidate may be due to the catalytic thermal decomposition of the phosphoramidate structure to produce acidic intermediates which could react with cellulose to alter its thermal decomposition.  相似文献   

5.
Three different boron containing materials, zinc borate (ZnB), borophosphate (BPO4), and boron and silicon containing oligomer (BSi), were used to improve the flame retardancy of melamine cyanurate (MC) in a polyamide‐6 (PA‐6) matrix. The combustion and thermal degradation characteristics were investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis‐Fourier transform infrared spectroscopy (TGA‐FTIR), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM). All the three boron compounds showed no synergistic effect with MC, and only BPO4 at high loadings showed comparable LOI values by increasing the dripping rate. For ZnB and BSi glassy film and char formation decreases the dripping rate and sublimation of melamine and give rise to low LOI. According to TGA‐FTIR results, addition of boron compounds does not alter the gaseous product distribution of both MC and PA‐6. The addition of boron compounds affects flame retardancy through physical means. It was noted from the TGA data that boron compounds reduced the decomposition temperature of both MC and PA‐6, also affecting the flame retardancy negatively by premature degradation of MC at low temperatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine),defined as PPAP,was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid,and the dehydration polymerization under heating in nitrogen atmosphere.Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy,13C and 31p solid-state nuclear magnetic resonance measurements.The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets.The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI),vertical burning (UL-94),thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests.The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),respectively.The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets.The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability.Meanwhile,the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect,which led to a higher char yield at high temperature.The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient,more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion.The formed char layer with high quality effectively prevented the heat transmission and diffusion,limited the production of combustible gases,and inhibited the emission of smoke,leading to the reduction of heat and smoke release.  相似文献   

7.
A comparison of the thermal decomposition and combustion characteristics of raw and scoured cottons has demonstrated a mechanistic link caused by the presence of inorganic salts in raw cotton, which enhances resistance to heat and flame. Thermogravimetry, differential thermogravimetry, and microscale combustion calorimetry were used to examine the thermal decomposition kinetics and thermal stability of cotton. During pyrolysis, both raw cotton nonwoven and woven fabrics exhibited a slower decomposition with a larger initial weight loss and produced a greater char yield, as compared to the fabrics after scouring, which removes most inorganic components from cotton. The activation energy (E a ) values, calculated using the Kissinger method, the Flynn–Wall–Ozawa method, and the modified Coats–Redfern method, were consistently determined to be smaller for raw cotton than for scoured cotton. The analyses of cotton fabrics heated at elevated temperatures by 13C CP/MAS NMR and ATR-FTIR showed that trace quantities of inorganic components promoted the formations of oxygenated moieties at low temperatures and aliphatic intermediate char. In the combustion, raw cotton exhibited a much smaller heat release capacity and a smaller total heat release than scoured cotton, indicating enhanced thermal stability when the inorganic components are intact.  相似文献   

8.
Preparation and thermal properties of a novel flame-retardant coating   总被引:1,自引:0,他引:1  
A novel silicone and phosphate modified acrylate (DGTH) was synthesized and characterized by 1H NMR and FTIR. It was found that DGTH could be cured both by UV radiation and moisture mode with FTIR. The flammability and thermal behavior of the cured film were studied by the limited oxygen index (LOI), thermogravimetric analysis (TG) and real time Fourier transform infrared (RT-FTIR). The LOI value of the cured film is 48 and the TG data shows that the cured film has three characteristic degradation temperature regions, attributing to the decomposition of phosphate and polyurethane to alcohols and isocyanates, thermal pyrolysis of alkyl chains, and decomposition of unstable structures in char, respectively. The RT-FTIR data implies that the degraded products of phosphate form poly(phosphoric acid) further catalyse the breakage of carbonyl groups to form an intumescent char, preventing the samples from further burning.  相似文献   

9.
以三氯氧磷和双酚A为原料制备了具有超支化结构的聚磷酸酯阻燃剂(HPPEA),通过红外(FTIR),核磁(1H-NMR,31P-NMR)及热重分析表征了产物的结构和热稳定性.将HPPEA与三聚氰胺聚磷酸盐(MPP)进行复配,通过熔融共混法制备阻燃尼龙6,通过氧指数法和垂直燃烧法测试了其阻燃性能,采用热重分析(TGA)研究...  相似文献   

10.
A nitrogen‐, phosphorus‐ and chlorine‐containing flame retardant, hexachlorocyclotriphosphazene (HCTP), has been covalently grafted onto the surface of multi‐wall carbon nanotubes (MWNT) to obtain MWNT‐HCTP. Polyamide 6 (PA6)/MWNT composites were then prepared via melt compounding. The flammability of PA6/MWNT composite was characterized by cone calorimetry, limiting oxygen index (LOI) and UL‐94 tests. The results showed that peak heat release rate of samples containing 3 wt% MWNT‐HCTP was only 460 kW/m2, which decreased by 35.2% compared with that of a neat PA6 sample. The LOI value was increased from 22.7% to 26.5%, and UL‐94 test performance was also significantly improved by the presence of MWNT‐HCTP. Scanning electron microscope (SEM) and optical microscope analysis showed that modified MWNT had a better dispersion and compatibility in PA6 than unmodified MWNT. The composition of residue chars and volatile products was investigated by SEM/energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric‐FTIR, respectively. It was proposed that grafted HCTP was mainly functioned in the condensed phase, where P, N can synergistically promote char formation and Cl element can catch free radicals to terminate the chain reaction during combustion of the PA6 composite. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, thermoplastic phenol formaldehyde (PF) grafted cyclic neopentyl phosphate (PFCP) was synthesized by using PF and 2,2‐dimethyl‐1,3‐propanediol phosphoryl chloride. It was characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR). Compared to PF, PFCP shows improved thermal and thermoxidative stability and allows itself to be used in polyamide 6 (PA6). A micro‐intumescent flame retardant system was constructed by using cyclic neopentyl phosphate as acid source, PF as charring agent and PA6 whose decomposition products work as blowing agent. The results showed that PA6/PFCP composite is classified the UL‐94 V‐0 rating and get a LOI value of 35.5% at 25% loading of PFCP. SEM results showed that the outside of char residues is continuous and dense, but the inside is micro‐intumescent and porous. XPS analysis of char revealed that most of phosphorus remained in the char layer. All the results suggest that the mode of flame retardant's action for PA6/PFCP composites is shifted from melting away to charring protection with the content of PFCP increasing. The coherent char generated by the decomposition of PFCP contributes most to flame retardancy of PA6. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

13.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Brown cotton fibers (SA-1 and MC-BL) studied were inferior to a white cotton fiber (Sure-Grow 747) in fiber quality, i.e., a shorter length, fewer twists, and lower crystallinity, but showed superior thermal resistance in thermogravimetric, differential thermogravimetric, and microscale combustion calorimetric (MCC) analyses. Brown cotton fibers yielded 11–23 % smaller total heat release and 20–40 % greater char. Washing fibers in water and a 1 % NaOH solution showed that rich natural inorganic components and the condensed tannins present in brown cotton are responsible for the unusual thermal property. The loss of inorganics from white cotton during a water wash increased the thermal decomposition temperature of cellulose, resulting in no char yield. However, the stronger binding of metal ions for brown cotton as well as its dominant adsorption of sodium ions after a 1 % NaOH wash facilitated the low-temperature thermal-reaction route; the sodium content showed a significant negative correlation with the heat release capacity of the fiber. Condensed tannins greatly enhanced the adsorption of sodium ions to the fiber and exhibited inherent thermal stability. The limiting oxygen indices (LOI) calculated from the MCC parameters indicated the slower burning characteristic of brown cotton, and its LOI was further increased upon adsorption of sodium ions.  相似文献   

15.
A series of FR-RPUF composites were prepared by a one-step water foaming process with ammonium polyphosphate (APP) and steel slag (SS) as flame retardants. Thermogravimetric analysis (TG), limiting oxygen index (LOI), UL-94 vertical combustion test, microscale combustion calorimetry (MCC), TG-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscopy (SEM), Raman spectra and FTIR were used to investigate the thermal stability, flame retardancy, combustion performance, gas phase products, and char residue morphology of FR-RPUF composites. TG test results showed that the initial decomposition temperature (T-5wt%) and char residue rate at 700°C of RPUF/APP/SS composites were significantly enhanced by the addition of APP and SS, and the thermal stability of the composites was improved. Flame retardant test results confirmed the significantly increased LOI values of RPUF/APP/SS composites with V-0 rating. TG-FTIR also confirmed the obviously decreased release of toxic gases and flammable gases in the combustion of RPUF/APP/SS composites. SEM and Raman spectra of char residues for the composites suggested that APP/SS system improved the compactness and graphitization degree of char layer for RPUF/APP/SS composite. The above researches provide a new strategy for the utilization of SS in fire safety engineering.  相似文献   

16.
In order to improve its water resistance and compatibility with polymer matrix, ammonium polyphosphate (APP) is modified with melamine‐trimesic acid (MEL‐TA) aggregates by supramolecular self‐assembly technology. Chemical structure and morphology of APP@MEL‐TA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM), respectively. Intumescent flame retardant system of APP@MEL‐TA and charring‐foaming agent is introduced into polypropylene (PP) matrix. The flammability and combustion behavior of PP composites are investigated by limiting oxygen index (LOI), UL‐94 vertical burning, and cone calorimetry tests. In terms of LOI values and cone combustion results, APP@MEL‐TA performs better than pristine APP. Char residue of PP composites is investigated by SEM and Raman spectra. Flame retardant mechanisms are proposed based on thermal decomposition, combustion results, and analysis on char residue.  相似文献   

17.
Melamine salt of tripentaerythriol phosphate (MTP), as a new intumescent flame‐retardant, was prepared from tripentaerythritol (TPE), polyphosphoric acid, phosphoric pentoxide, and melamine, and then incorporated into polypropylene (PP) to obtain flame‐retarded PP‐MTP. FT‐IR analysis showed that MTP was in the form of cage structure. The flammability, combustion behavior, and thermal degradation and stability of flame‐retarded PP were characterized by using LOI, UL‐94 test, cone calorimetry, and TGA, respectively. By SEM, the char structure of PP‐MTP was analyzed. XRD diffraction tests showed that PP‐matrix of PP‐MTP presented better crystallized phases, when MTP was modified by methyl hydrogen siloxane. The relations of the dispersion of MTP in PP matrix to the compatibility between PP and MTP, and to the flame retardancy were discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
MPP/PER/APP系统阻燃的PA6/OMMT纳米复合材料的燃烧特性   总被引:3,自引:0,他引:3  
以聚磷酸蜜胺(MPP)/季戊四醇(PER)/聚磷酸铵(APP)三元膨胀型阻燃剂(IFR)(其中P/PER/三聚氰胺(MA)的摩尔比为4.1/1.0/1.1)对聚酰胺6(PA6)/有机蒙脱土(OMMT)纳米复合材料(wOMMT=0.03)进行阻燃,测定了阻燃PA6/OMMT的极限氧指数(LOI)及垂直燃烧阻燃性(UL94),以锥形量热仪(CONE)测定了材料诸多与火灾安全性有关的阻燃参数,包括释热速率、有效燃烧热、总释热量、质量损失速率、比消光面积及引燃时间等,并与PA6、阻燃PA6及PA6/OMMT进行了比较,用扫描电镜(SEM)观察了由CONE测试所得残炭的形态。  相似文献   

19.
A novel intumescent flame retardant, containing ammonium polyphosphate (APP), and poly(hexamethylene terephthalamide) (PA6T), was prepared for flame retarding polypropylene (PP). The flame retardation of the PP composites was characterized by limiting oxygen index (LOI). The thermal degradation of the composites was investigated by means of thermogravimetric analysis (TG) and TG coupled with Fourier transform infrared spectroscopy (TG-FTIR). The morphology of the char obtained after combustion of the composites was studied by scanning electron microscopy. It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA6T/APP/PP (5/25/70) system increasing from 17.5 to 32. Meanwhile, the TG and TG-FTIR work indicated that PA6T could be effective as a carbonization agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of the PP composites. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame retarded PP composites.  相似文献   

20.
A flame-retardant epoxy resin (EP) was synthesized based on a novel reactive phosphorus-containing monomer, 4-[(5,5-dimethyl-2-oxide-1,3,2-dioxaphosphorinan-4-yl)oxy]-phenol (DODPP), and its structures were characterized by FTIR, 1H NMR and 31P NMR spectra. The DODPP-EP3/LWPA (low molecular weight polyamide), which contains 2.5% phosphorus, can reach UL-94 V-0 rating and a limiting oxygen index (LOI) value of 30.2%. The thermal properties and burning behaviours of cured epoxy resins were investigated by differential scanning calorimeter (DSC), thermogravimetry (TG), LOI, UL-94 tests and cone calorimetry. The morphologies of residues of cured epoxy resins were investigated by scanning electron microscopy (SEM). DSC shows that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA shows that the onset decomposition temperatures and the maximum-rate decomposition temperatures decrease, while char yields increase, with the increase of phosphorus content. The data from the cone calorimeter tests give the evidence that heat release rate (HRR), peak heat release rate (PHRR), average heat release rate (Av-HRR), average mass loss rate (Av-MLR) and the fire growth rate index (FIGRA) decrease significantly for DODPP-EP3/LWPA. SEM shows that the DODPP-EP3/LWPA forms lacunaris and compact charred layers which inhibit the transmission of heat during combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号