首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Flexible organic light-emitting devices (FOLEDs) based on multiple quantum well (MQW) structures, which consist of alternate layers of 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4-TCNQ) and 4,4′,4″-tris-(3-methylphenylphe-nylamino)tripheny-lamine (m-MTDATA) have been fabricated. The Alq3-based device with double quantum well (DQW) structure exhibits the remarkable electroluminescent (EL) performances for the brightness of 23,500 cd/m2 at 14 V and the maximum current efficiency of 7.0 cd/A at 300.3 mA/cm2, respectively, which are greatly improved by 114% and 56% compared with the brightness of 10,958 cd/m2 at 14 V and the maximum current efficiency of 4.5 cd/A at 174.0 mA/cm2 for the conventional device without MQW structures. These results demonstrate that the EL performances of FOLEDs could be greatly improved by utilizing the novel MQW structures, and the reason for this improvement has also been explained by the effect of interfacial dipole and interfacial doping between F4-TCNQ and m-MTDATA in this article.  相似文献   

2.
Improved performance of organic light-emitting diodes (OLEDs) as obtained by a mixed layer was investigated. The OLEDs with a mixed layer which were composed of N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1,1′-biphenyl-4,4′-diamine (NPB), tris-(8-hydroxyquinolato) aluminum (Alq3) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) showed the highest brightness and efficiency, which reached 19048 cd/m2 at 17 V and 4.3 cd/A at 10 mA/cm2, respectively. The turn-on voltage of the device is 2.6 V. Its Commission Internationale del’Eclairage (CIE) coordinate is (0.497, 0.456) at 17 V, and the CIE coordinates of the device are largely insensitive to the driving voltages, which depicts stabilized yellow color.  相似文献   

3.
Efficient white light-emitting diodes (WOLEDs) were fabricated with a solution-processed single emission layer composed of a molecular and polymeric material mixed-host (MH). The main host used was a blue-emitting molecular material of 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) and the assisting host used was a hole-transport-type polymer of poly(9-vinylcarbazole) (PVK). By co-doping 4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl and 5,6,11,12-tetraphenylnaphacene into the MH, the performances of the fabricated devices made with different mixing ratio of host materials were investigated, and were to depend on the mixing ratios. Under the optimal PVK:DPVBi ratio (3:7), we achieved a maximum luminance of 14 110 cd/m2 and a maximum current efficiency of 9.5 cd/A. These improvements were attributed to the MH structure, which effectively improved the thermal stability of spin-coated film and enhanced the hole-injection/transporting properties of WOLEDs.  相似文献   

4.
A new solution-processable tetraalkoxy-substituted poly(1,4-phenylenevinylene) derivative, poly{[2-(3′,7′-dimethyloctyloxy)-3,5,6-trimethoxy]-1,4-phenylenevinylene} (TALK-PPV), was synthesized through a dehydrohalogenation polymerization route, and its light-emitting properties were investigated. The TALK-PPV showed highly blue-shifted UV–visible absorption and PL emission spectra compared to the dialkoxy-substituted PPV derivatives. This is because of the disturbance to the π-conjugation caused by a steric hindered structure. The TALK-PPV thin film exhibited an absorption peak at 446 nm, with an onset at 515 nm. Its PL emission maximum was at 554 nm. Cyclic voltammetric analysis showed the HOMO and LUMO energy levels of the TALK-PPV to be 5.77 and 3.36 eV, respectively. Light-emitting devices were fabricated with an ITO (indium-tin oxide)/PEDOT/polymer/Ca/Al configuration. The TALK-PPV component leads to pure green light emission with a CIE 1931 chromaticity of (0.20, 0.74) at 100 cd/m2 brightness, which is very close to the standard green (0.21, 0.71) demanded by the NTSC (National Television System Committee). The maximum brightness of this device was 24,900 cd/m2 with an efficiency of 1.45 cd/A.  相似文献   

5.
The stability of organic light-emitting devices with a spin-coated film of 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) as hole-injection layer (HIL) was investigated. The lifetime of this device is increased to 40 900 h (with an initial luminance of 100 cd/m2), which is 2.7 times as large as that of the control device with a vacuum-deposited film of m-MTDATA as HIL. A significant feature with this method is that the performance and the operational stability of the device with spin-coated HIL are little attenuated by the rough substrate coated by the indium-tin oxide film. The surface morphology of the solution-processed m-MTDATA thin film is quite even and uniform, and it acts as a smoothing layer in the device, which leads to the stability enhancement of the device.  相似文献   

6.
《Current Applied Physics》2010,10(5):1326-1330
This paper describes the white organic light-emitting diodes (WOLEDs) made from a benzothiazole derivative, N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA). The bright yellowish-white emission was obtained from a non-doped triple-layer device: ITO/NPB (40 nm)/BPNA (50 nm)/Alq3 (40 nm)/LiF/Al. The Commission Internationale de L’Eclairage (CIE) coordinates of the device were (0.24, 0.36) at 10 V. The maximum brightness of the device was 9225 cd/m2 at 14.4 V. A current efficiency of 3.08 cd/A, a power efficiency of 1.21 lm/W and an external quantum efficiency of 1.18% at a driving current density of 20 mA/cm2 were achieved. WOLED with a DCJTB-doped structure of ITO/TcTa/BPNA/BPNA: DCJTB (0.5%)/BPNA/BCP/Alq3/LiF/Al was fabricated in comparison with the non-doped device. The device emitted bright white light with the CIE coordinates of (0.33, 0.29) at 10 V and a maximum luminance of 7723 cd/m2 at 14.8 V.  相似文献   

7.
A new symmetric starburst orange-red light material, tris(4-(2-(N-butyl-1,8-naphthalimide)ethynyl)phenyl)amine (TNGT), was designed and synthesized. It shows a high fluorescence quantum yield and a slight concentration-quenching effect. A high brightness (6600 cd/m2) and a high current efficiency [4.57 cd/A (at 420 cd/m2)] with CIE (0.59, 0.40) were achieved at a relatively high doping concentration (20 wt%) in a TNGT-based OLED.  相似文献   

8.
《Current Applied Physics》2010,10(4):1103-1107
Highly efficient and stable OLED device in which hole-drift current and electron-drift current are balanced was fabricated. Drift current characteristics according to the thickness of organic layer were examined using the device with ITO/m-MTDATA/NPB/Al structure that can only move the hole and the device with Al/LiF/Alq3/LiF/Al structure that can only move the electron. Using the result of such examination, green device with balanced drift current was produced. Device with the structure of m-MTDATA (80 nm)/NPB (20 nm)/C-545T (3%) doped Alq3 (5 nm)/Alq3 (59 nm)/LiF (1 nm)/Al (200 nm) showed color purity of (0.309, 0.643) and high efficiency of 7.0 lm/W (14.4 cd/A). Most of light emission was observed inside the green emitting layer. Through the result of EL spectrum for the device also including red emitting layer, same result could be obtained. The device with balanced drift current also showed half life-time of 175 h for initial luminance of 3000 cd/m2, which is more stable in comparison to the device without balanced drift current.  相似文献   

9.
We demonstrate the use of screen printing in the fabrication of single-layer organic-light-emitting devices (OLEDs). The organic layer is a single-layer of polystyrene, in which we incorporate rubrene for orange emission and α-NPD, DPVBi for blue emission. An appropriate mixing of the two colors produced white emission by incomplete Förster energy transfer. We showed the role of each constituent, α-NPD, DPVBi and rubrene in the emission characteristics of OLEDs. The turn-on voltage of screen-printed white OLEDs was about 10 V with maximum brightness and luminous efficiency up to 1300 cd/m2 and 9 cd/A, respectively.  相似文献   

10.
A comparative study on top-emitting organic light-emitting diodes (TOLEDs) with normal and inverted structures is briefly investigated. In comparison with the normal TOLED having Ag reflective anode, the inverted device with monolayer Al reflective cathode shows low efficiency as a result of lower reflectance of Al and inferior electron injection. Using Ag/Al bilayer reflective cathode is demonstrated to be a simple and effective method of enhancing efficiency in inverted TOLED. With tris(8-hydroquinoline) aluminum (Alq3) as emitter the luminous efficiency reaches 5.9±0.6 cd/A, which is much higher than those of the corresponding normal TOLED (~5.1 cd/A) and inverted TOLED with monolayer Al reflective cathode (~4 cd/A). The improved performance is attributed to the enhanced reflectance and significant microcavity effect. The electron-injection barrier height of ~0.1 eV from Al to Alq3 via an ultrathin LiF is estimated in the tunneling process for both normal and inverted devices.  相似文献   

11.
《Current Applied Physics》2009,9(5):1151-1154
Highly efficient red phosphorescent devices comprising a simple bi-layered structure using tris(1-phenylisoquinoline)iridium (Ir(piq)3) doped in a narrow band-gap fluorescent host material, bis(10-hydroxybenzo [h] quinolinato)beryllium complex (Bebq2) are reported. The driving voltage to reach 1000 cd/m2 is 3.5 V in Bebq2:Ir(piq)3 red phosphorescent device. With a dopant concentration of as low as 4%, the current and power efficiency values of 8.41 cd/A and 7.34 lm/W are obtained in this PHOLEDs, respectively. External quantum efficiency (EQE) of 14.5% is noticed in this red phosphorescent device, promising to high brightness applications.  相似文献   

12.
This letter presents a deep blue organic light emitting diode which was fabricated by using 9,10-di(2-naphthyl)anthracene as a dopant and 4,4′-N,N′-dicarbazole-biphenyl as a host. The Commission Internationale de l’Eclairage coordinates of (0.1516, 0.0836) were achieved in the cell, which is very close to the National Television Standards Committee standard of (0.14, 0.08). Meanwhile, maximum luminance over 6500 cd/cm2 and maximum current efficiency of 3.5 cd/A were also obtained.  相似文献   

13.
《Solid State Communications》2002,121(2-3):145-147
A gadolinium ternary complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) (phenanthroline) gadolinium [Gd(PMIP)3(Phen)] was synthesized and used as a light emitting material in the organic electroluminescent (EL) devices. The triple layer device with a structure of indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD) (20 nm)/Gd(PMIP)3(Phen) (80 nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (bathocuproine or BCP) (20 nm)/Mg: Ag(200 nm)/Ag(100 nm) exhibited green emission peaking at 535 nm. A maximum luminance of 230 cd/m2 at 17 V and a peak power efficiency of 0.02 lm/w at 9 V were obtained.  相似文献   

14.
This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m2 when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m2 is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied.  相似文献   

15.
Transparent conductive WO3/Ag/MoO3 (WAM) multilayer electrodes were fabricated by thermal evaporation and the effects of Ag layer thickness on the optoelectronic and structural properties of multilayer electrode as anode in organic light emitting diodes (OLEDs) were investigated using different analytical methods. For Ag layers with thickness varying between 5 and 20 nm, the best WAM performances, high optical transmittance (81.7%, at around 550 nm), and low electrical sheet resistance (9.75 Ω/cm2) were obtained for 15 nm thickness. Also, the WAM structure with 15 nm of Ag layer thickness has a very smooth surface with an RMS roughness of 0.37 nm, which is suitable for use as transparent conductive anode in OLEDs. The current density?voltage?luminance (J?V?L) characteristics measurement shows that the current density of WAM/PEDOT:PSS/TPD/Alq3/LiF/Al organic diode increases with the increase in thickness of Ag and WO3/Ag (15 nm)/MoO3 device exhibits a higher luminance intensity at lower voltage than ITO/PEDOT:PSS/TPD/Alq3/LiF/Al control device. Furthermore, this device shows the highest power efficiency (0.31 lm/W) and current efficiency (1.2 cd/A) at the current density of 20 mA/cm2, which is improved 58% and 41% compared with those of the ITO-based device, respectively. The lifetime of the WO3/Ag (15 nm)/MoO3 device was measured to be 50 h at an initial luminance of 50 cd/m2, which is five times longer than 10 h for ITO-based device.  相似文献   

16.
Temperature-dependent impedance characteristics of ITO/Alq3/Al organic light-emitting diodes were studied in the frequency range from 40 to 108 Hz, and the temperature was varied from 10 to 300 K. At each temperature, the frequency-dependent complex impedance was measured under discrete bias voltages from −6 to +20 V, and the voltage-dependent impedance was measured at 102 Hz, 103 Hz, 104 Hz, and 105 Hz. A Cole–Cole plot shows that there is one relaxation, and a parallel capacitor–resistor network in series with a contact resistance could be considered as an equivalent electrical circuit to this device. As the temperature decreases, a radius in the Cole–Cole plot increases, which indicates an increase of resistance of the device.  相似文献   

17.
In this paper, we synthesize two 1,10-phenanline derived ligands, along with their corresponding Eu(III) complexes. Their crystal structures, photophysical characteristics, including UV–vis absorption, photoluminescence (PL), quantum yields, excited state lifetimes, and thermal stability, are discussed in detail. In addition, we also investigate their potential application in electroluminescence (EL) devices. Experimental data suggest that the two Eu(III) complexes are promising emitters for EL application: pure red emissions with a maximum EL brightness of 850 cd/m2 and a maximum current efficiency of 3.67 cd/A are achieved. It is found that the elimination of active hydrogen in ligand favors most PL and EL factors, including PL quantum efficiency, thermal stability, and current efficiency, but not for maximum EL brightness. An emitter with shorter excited state lifetime leads to a higher EL brightness, regardless of its relatively lower device efficiency.  相似文献   

18.
研究了有机薄膜晶体管(OTFT)与聚合物发光二极管(PLED)集成制备技术和相关物理问题.OTFT结构为栅极钽(Ta)/绝缘层五氧化二钽(Ta2O5)/有源层并五苯(Pentacene)/源漏极金(Au);PLED器件结构为ITO/PEDOT:PEO(polyethylene oxide)/P-PPV或MEH-PPV/Ba/Al.PEDOT:PEO,P-PPV和MEH-PPV薄膜层均采用丝网印刷技术,实现了OTFT与PLED器件集成发光.其中OTFT器件的阈值电压为-7V,迁移率为0.91cm2/(V.s),并通过OTFT驱动得到以P-PPV和MEH-PPV为发光层的PLED器件的发光亮度分别达到124和26cd/m2,电流效率分别为12.4和1.1cd/A.利用丝网印刷技术可以有效控制高分子薄膜的沉积区域,实现功能器件的集成.  相似文献   

19.
We demonstrate all-in-one-type organic light-emitting diodes (OLEDs) that are fabricated using a color converting plate as a substrate. The color converting plate is Pb-free phosphor-in-glass (PiG), which is prepared by mixing Y3Al5O12:Ce3+ (YAG:Ce3+) and SiO2–B2O3–RO (R = Ba, Zn) glass frit by sintering at 750 °C for 30 min. The maximum luminance, luminance efficiency, and power efficiency of blue OLEDs fabricated on commercial glass are measured as 10500 cd/m2, 10.18 cd/A, and 2.95 lm/W, respectively. The Commission Internationale de l'Eclairge (CIE) coordinates of blue OLEDs is (0.167, 0.325). Our obtained results show that the luminance value decreased as the PiG thickness increased, and the glass to phosphor (GTP) ratio decreased. The OLED devices fabricated on the PiG substrate (GTP ratio = 9:1, thickness: 150 μm) showed a maximum luminance, luminance efficiency, and power efficiency of 7600 cd/m2, 8.76 cd/A, and 2.85 lm/W, respectively. The CIE color coordinates changed to (0.286, 0.504) at 200 mA/cm2. These results proved that color coordination can be easily adjusted by varying the GTP ratio and the thickness of the PiG.  相似文献   

20.
Organic electrophosphorescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decreases rapidly as the luminance increases, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all-organic TFT. We obtained the maximum power luminance that was obtained about 90 cd/m2. Turn-on voltage is approximately 10 V. Field effect mobility, threshold voltage, and on–off current ratio in 0.5-μm thick gate dielectric layer were 0.13 cm2/V s, −7 V, and 106 A/A. The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)3/BCP/Alq3/Li:Al/Al. In organic TFT, photoacryl is used as an insulator and pentacene as an active layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号